Vel Tech Multi Tech

Dr.Rangarajan Dr.Sagunthala Engineering College

An Autonomous Institution

Department of Mechanical Engineering

B.E Mechanical Engineering

CHOICE BASED CREDIT SYSTEM

CURRICULA AND SYLLABI - REGULATIONS 2019

THE VISION

To become a centre of eminence in educating students to become triumphant mechanical engineers.

THE MISSION

* To endue the students with the fundamentals of mechanical engineering with a passion for life-long learning of industry practices

* To propagate life-long learning.

* To impart the right proportion of knowledge, attitudes and ethics in students to enable them take up positions of responsibility in the society and make significant contributions.

PEO	PROGRAMME EDUCATIONAL OBJECTIVES
PEO1	Graduates will apply their knowledge and skills to solve the problems in the field of Mechanical Engineering occurring in industries and transportation.
PEO2	Graduates of the programme will find employment as Mechanical engineers in engineering and business or will be admitted for higher studies.
PEO3	Graduates of the programme will solve problem with professionalism.

PO's	PROGRAMME OUTCOMES
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Lifelong learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.
PSO's	PROGRAM SPECIFIC OUTCOMES
PSO1	Ability to understand the principles and working of machines.
PSO2	Ability to understand the structural development methodologies of machines & Possess knowledge of design process.
PSO 3	Ability to use knowledge in various domains to identify research gaps & to provide solution to new ideas and innovations related to Mechanical Engineering.

SEMESTER – I

Sl.No	Course	Name of the Course Category		No.	Credi ts					
	Code			L	Т	Р	ts			
		THEORY								
1	191MA101	Engineering Mathematics I	BS	2	2	0	3			
2	191PH101	Engineering Physics	BS	3	0	0	3			
3	191CH101	Engineering Chemistry	BS	3	0	0	3			
4	191HS101	English for Engineering Students	HSS	3	0	0	3			
5	191ME111	Basic Civil and Mechanical Engineering	ES	3	0	0	3			
6	191EE111	Basic Electrical and Electronics Engineering	ES	3	0	0	3			
	PRACTICAL									
1	191PH10A	Physics Laboratory	BS	0	0	2	1			
2	191CH10A	Chemistry laboratory	BS	0	0	2	1			
	Total					4	20			

SEMESTER – II

SI.	Course	Name of the Course	Category	No.	Credi				
INO	Code			L	Т	Р	ts		
	THEORY								
1	191MA201	Engineering Mathematics II	BS	2	2	0	3		
2	191PH204	Materials Science for Mechanical Engineering	BS	3	0	0	3		
3	191HS201	Environmental Science and Engineering	HSS	3	0	0	3		
4	191ME211	Engineering Graphics	ES	2	2	0	3		
5	191ME212	Engineering Mechanics	ES	2	2	0	3		
6	191ME221	Manufacturing Technology I	PC	3	0	0	3		
	PRACTICAL								
1	191ME21						2		
	А	Engineering Practices Laboratory	ES	0	0	4	2		
		Total		15	6	4	20		

Sl. No	Course Code	Name of the Course	Category	No. of Periods / Week			Credit			
				L	Т	Р	S			
	THEORY									
1	191MA305	Transforms and Partial Differential Equations	BS	2	2	0	3			
2	191ME311	Fluid Mechanics and Machinery	ES	2	2	0	3			
3	191EE311	Electrical Drives and Controls	ES	3	0	0	3			
4	191ME321	Engineering Thermodynamics	PC	2	2	0	3			
5	191ME322	Manufacturing Technology II	PC	3	0	0	3			
6	191ME323	Engineering Metallurgy	PC	3	0	0	3			
		PRACTICAL								
1	191EE31A	Electrical Engineering Laboratory	ES	0	0	4	2			
2	191ME31B	Fluid Mechanics and machinery Laboratory	ES	0	0	4	2			
3	191ME32A	Manufacturing Technology Laboratory	РС	0	0	4	2			
		Total		15	6	12	24			

SEMESTER – III

SEMESTER-IV

CL N.	Course Code	Name of the Course	Catalan	No.	of Peri	Cuadita				
SI. NO		Name of the Course	Category	т	week		Creatis			
				L	T	Р				
THEORY										
1	101MA 402	Statistics and Numerical	BS	2	2	0	3			
1	191MA402	Methods								
2	101 ME 411	Strength of materials for	ES	3	0	0	3			
	1711012411	Mechanical Engineers								
3	191ME421	Kinematics of Machinery	PC	2	2	0	3			
4	191ME422	Computer Aided Design and	PC	3	0	0	3			
		Manufacturing								
5	191ME423	Thermal Engineering	PC	3	0	0	3			
		PRACTICA	L							
1	101US/0D	Interpersonal Skills	UCC	0	0	r	1			
	191 1134 0D	Laboratory	пъъ	0	0	Z	1			
2	101ME41A	Strength of materials	EC	0	0	4	2			
	1911/1E41A	Laboratory	ES	U	U	4	Z			
3	191ME42A	CAD/ CAM Laboratory	PC	0	0	4	2			
		INTERNSHI	P							

1	191MC46A	Internship/ Training -I	MC	0	0	0	0
		Total		13	4	10	20

$\mathbf{SEMESTER} - \mathbf{V}$

SI.N	Course	Name of the Course	Category	No. of Periods / Week			Credits			
U	Coue			L	Т	Р				
	THEORY									
1	191ME521	Design of Machine Elements	PC	3	0	0	3			
2	191ME522	Metrology and Measurements	PC	3	0	0	3			
3	191ME523	Dynamics of Machines	PC	2	2	0	3			
4	-	Professional Elective-I	PE	3	0	0	3			
5	191CS5410	Open Elective-I Problem Solving and Python Programming	OE	3	0	0	3			
		PRACTICA	AL							
1	191ME52A	Metrology and Measurements Laboratory	PC	0	0	4	2			
2	191ME52B	Kinematics and Dynamics Laboratory	PC	0	0	4	2			
	Total					8	19			

SEMESTER – VI

SI.N	I.N Course Name of the Course Category		Category	No. o	Credits			
0 Couc			L	Т	Р			
	THEORY							
1	191ME621	Design of Transmission Systems	PC	3	0	0	3	
2	191ME622	Heat and Mass Transfer	PC	3	0	0	3	
3	191ME623	Finite Element Analysis	PC	3	0	0	3	
4	-	Professional Elective-II	PE	3	0	0	3	
5	-	Professional Elective-III	PE	3	0	0	3	
6	-	Open Elective-II	OE	3	0	0	3	
		PRACTICA	A L					
1	191ME62A	Finite Element Method Laboratory	PC	0	0	4	2	
2	191ME62B	Thermal Engineering Laboratory	PC	0	0	4	2	
		INTERNSF	IIP					
1	191MC66A	Internship/Training-II	MC	0	0	0	0	
	Total				0	8	22	

SEMESTER – VII

Sl. No	Course Code Name of the Course	Category	No.	Credits					
				L	Т	Р			
THEORY									
1	191HS701	Principles of Management	HSS	3	0	0	3		
2	191ME721	Power Plant Engineering	PC	3	0	0	3		
3	-	Professional Elective-IV	PE	3	0	0	3		
4	-	Professional Elective-V	PE	3	0	0	3		
5	-	Open Elective-III	OE	3	0	0	3		
		PRACTIO	CAL						
1	191ME77A	Design and Fabrication Project	PROJ	0	0	4	2		
		SEMIN	AR						
1	191MC76A	Technical Seminar	MC	0	0	0	0		
		Total		15	0	8	17		

SEMESTER – VIII

Sl. No	Course Code Name of the Course	Category	No.	Credits					
				L	Т	Р			
THEORY									
1	-	Professional Elective-VI	PE	3	0	0	3		
2	-	Open Elective-IV	OE	3	0	0	3		
3	-	Open Elective-V	OE	3	0	0	3		
PROJECT									
1	191ME85A	Project Work	PROJ	0	0	20	10		
Total				9	0	20	19		

Total Credits : 161

Sl. No	Course Code	Name of the Course	No. of Periods / Week	L	Т	Р	С
1	191MA10 1	Engineering Mathematics I	4	2	2	0	3
2	191PH101	Engineering Physics	3	3	0	0	3
3	191CH101	Engineering Chemistry	3	3	0	0	3
4	191PH10A	Physics Laboratory	2	0	0	2	1
5	191CH10 A	Chemistry laboratory	2	0	0	2	1
6	191MA20 1	Engineering Mathematics II	4	2	2	0	3
7	191PH204	Materials Science for Mechanical Engineering	3	3	0	0	3
8	191MA30 5	Transforms and Partial Differential Equations	4	2	2	0	3
9	191MA40 2	Statistics and Numerical Methods	4	2	2	0	3

BASIC SCIENCES (BS)

HUMANITIES AND SOCIAL SCIENCES (HS)

SI. No	Course Code	Name of the Course	No. of Periods / Week	L	Т	Р	С
1	191HS101	English for Engineering Students	3	3	0	0	3
2	191HS201	Environmental Science and Engineering	3	3	0	0	3
3	191HS40B	Interpersonal Skills Laboratory	2	0	0	2	1
4	191HS701	Principles of Management	3	3	0	0	3

ENGINEERING SCIENCES (ES)

Sl. No	Course Code	Name of the Course	No. of Periods / Week	L	Т	Р	С
1	191ME111	Basic Civil and Mechanical Engineering	3	3	0	0	3
2	191EE111	Basic Electrical and Electronics Engineering	3	3	0	0	3
3	191ME211	Engineering Graphics	4	2	2	0	3
4	191ME212	Engineering Mechanics	4	2	2	0	3
5	191ME21 A	Engineering Practices Laboratory	4	0	0	4	2
6	191ME311	Fluid Mechanics and Machinery	3	2	2	0	3
7	191EE311	Electrical Drives and Controls	3	3	0	0	3

8	191EE31A	Electrical Engineering Laboratory	4	0	0	4	2
9	191ME31 B	Fluid Mechanics and machinery Laboratory	4	0	0	4	2
10	191ME411	Strength of materials for Mechanical Engineers	3	3	0	0	3
11	191ME41 A	Strength of materials Laboratory	4	0	0	4	2

Sl. No	Course Code	Name of the Course	No. of Periods / Week	L	Т	Р	С
1	191ME221	Manufacturing Technology I	3	3	0	0	3
2	191ME321	Engineering Thermodynamics	4	2	2	0	3
3	191ME322	Manufacturing Technology II	3	3	0	0	3
4	191ME323	Engineering Metallurgy	3	3	0	0	3
5	191ME32A	Manufacturing Technology Laboratory	4	0	0	4	2
6	191ME421	Kinematics of Machinery	4	2	2	0	3
7	191ME422	Computer Aided Design and Manufacturing	3	3	0	0	3
8	191ME423	Thermal Engineering	3	3	0	0	3
9	191ME42A	CAD/ CAM Laboratory	4	0	0	4	2
10	191ME521	Design of Machine Elements	3	3	0	0	3
11	191ME522	Metrology and Measurements	3	3	0	0	3
12	191ME523	Dynamics of Machines	4	2	2	0	3
13	191ME52A	Metrology and Measurements Laboratory	4	0	0	4	2
14	191ME52B	Kinematics and Dynamics Laboratory	4	0	0	4	2
15	191ME621	Design of Transmission Systems	3	3	0	0	3
16	191ME622	Heat and Mass Transfer	3	3	0	0	3
17	191ME623	Finite Element Analysis	3	3	0	0	3
18	191ME62A	Finite Element Method Laboratory	4	0	0	4	2
19	191ME62B	Thermal Engineering Laboratory	4	0	0	4	2
20	191ME721	Power Plant Engineering	3	3	0	0	3

PROGRAMME CORE (PC)

PROFESSIONAL ELECTIVES FOR B.E. MECHANICAL ENGINEERING

Sl. No	Course Code	Name of the Course	No. of Periods / Week	L	Т	Р	С
1	191ME531	Automobile Engineering	3	3	0	0	3
2	191ME532	Business Analytics	3	3	0	0	3
3	191ME533	Computer Integrated Manufacturing	3	3	0	0	3
4	191ME535	Fundamentals of Nano Science	3	3	0	0	3
5	191ME534	Entrepreneurship Development	3	3	0	0	3

SEMESTER V, ELECTIVE I

SEMESTER VI, ELECTIVE II

Sl. No	Course Code	Name of the Course	No. of Periods / Week	L	Т	Р	С
1	<mark>191ME631</mark>	Gas Dynamics and Jet Propulsion	3	3	0	0	3
2	<mark>191ME632</mark>	Hydraulics and Pneumatics	3	3	0	0	3
3	<mark>191ME633</mark>	Intellectual Property Rights	3	3	0	0	3
4	<mark>191ME634</mark>	Professional Ethics in Engineering	3	3	0	0	3
5	<mark>191ME635</mark>	Welding Technology	3	3	0	0	3

SEMESTER VI, ELECTIVE III

Sl. No	Course Code	Name of the Course	No. of Periods / Week	L	Т	Р	С
1	<mark>191ME636</mark>	Refrigeration and Air conditioning	3	3	0	0	3
2	<mark>191ME637</mark>	Renewable Sources of Energy	3	3	0	0	3
3	<mark>191ME638</mark>	Systems Engineering	3	3	0	0	3
4	<mark>191ME639</mark>	Total Quality Management	3	3	0	0	3
5	<mark>191ME6310</mark>	Unconventional Machining Processes	3	3	0	0	3

SEMESTER VII, ELECTIVE IV

Sl. No	Course Code	Name of the Course	No. of Periods / Week	L	Т	Р	С
1	<mark>191ME731</mark>	Composite Materials and Mechanics	3	3	0	0	3
2	<mark>191ME732</mark>	Computational Fluid Dynamics	3	3	0	0	3
3	191ME733	Design of Jigs Fixtures and Press Tools	3	3	0	0	3
4	<mark>191ME734</mark>	Mechatronics	3	3	0	0	3
5	191ME735	Supply Chain Management	3	3	0	0	3

PROFESSIONAL ELECTIVES FOR B.E. MECHANICAL ENGINEERING

SEMESTER VII, ELECTIVE V

Sl. No	Course Code	Name of the Course	No. of Period s / Week	L	Т	Р	С
1	191ME736	Industrial Safety Engineering	3	3	0	0	3
2	191ME737	Noise Vibration and Harshness	3	3	0	0	3
3	191ME738	Non Destructive Testing and Evaluation	3	3	0	0	3
4	191ME739	Operations Research	3	3	0	0	3
5	191ME7310	Product Design and Development	3	3	0	0	3

SEMESTER VIII, ELECTIVE VI

SI. No	Course Code	Name of the Course	No. of Period s / Week	L	Т	Р	С
1	191ME831	Engineering Economics	3	3	0	0	3
2	191ME832	Internet of Things for Mechanical Engineering	3	3	0	0	3
3	191ME833	Maintenance Engineering	3	3	0	0	3
4	191ME834	Production Planning and Control	3	3	0	0	3
5	191ME835	Robotics and Automation	3	3	0	0	3

MANDATORY COURSES (MC)

SI. No	Course Code	Name of the Course	No. of Period s / Week	L	Т	Р	С
1	191MC46A	Internship/ Training -I	0	0	0	0	0
2	191MC66A	Internship/Training-II	0	0	0	0	0
3	191MC76A	Technical Seminar	0	0	0	0	0

OPEN ELECTIVE (OE)

(Offered to other branches)

SI. No	Course Code	Name of the Course	No. of Period s/Week	L	Т	Р	С
1	191ME541	Advanced Materials	3	3	0	0	3
2	191ME542	Design Thinking	3	3	0	0	3
3	191ME543	Energy Conservation and Management	3	3	0	0	3
4	191ME544	Lean Six Sigma	3	3	0	0	3
5	191ME545	Material Science and Technology	3	3	0	0	3
6	191ME546	Renewable Energy Sources	3	3	0	0	3

Г	-			•	•	0		-
	1	191ME547	Testing of Materials	3	3	0	0	3
_								

SUMMARY

SI No	Category	Credits per semester						redits per semester Ci		Credits per semester (
51. 110.		Ι	II	III	IV	V	VI	VII	VIII	Total	%			
1	BS	11	6	3	3	-	-	-	-	23	14.29 %			
2	HSS	3	3	-	1	-	-	3	-	10	6.21 %			
3	ES	6	8	1 -	5	-	-	-	-	29	18.01 %			
4	PC	-	3	11	11	13	13	3	-	54	33.54 %			
5	PE	-	-	-	-	3	6	6	3	18	11.18 %			
6	OE	-	-	-	-	3	3	3	6	15	9.32 %			
7	PROJ	-	-	-	-	-	-	2	1 -	12	7.45 %			
	Total	20	20	14	20	19	22	17	9	23	14.29 %			
8	MC													

CREDIT DISTRIBUTION

Sl. No.	Code	Category	Credits (Regular)	Credits (Lateral)
1	BS	Basic Sciences	23	6
2	HSS	Humanities and Social Sciences	10	4
3	ES	Engineering sciences	29	15
4	PC	Programme Core	54	48
5	PE	Programme Electives	18	18
6	OE	Open Electives	15	15
7	PROJ	Project	12	12
8	МС	Mandatory Courses	0	0
		Total Credits	161	118

COUR COD	SE E	COURSE NAME	L	Т	Р	С				
191MA	101	ENGINEERING MATHEMATICS I	2	2	0	3				
		COURSE OBJECTIVES								
•] r	• To develop greater knowledge and understanding of mathematics and to attain the skills necessary for success in the study of higher mathematics.									
UNIT	NIT 1 MATRICES									
Characte Cayley I of quadr	Characteristic equation–Eigen values and Eigen vectors of a real matrix–Properties of Eigen values – Cayley Hamilton theorem- Orthogonal reduction of a symmetric matrix to diagonal form– Reduction of quadratic form by orthogonal transformation –Applications.									
UNIT 2	2	GEOMETRICAL APPLICATIONS OF DIFFERENTIALCALCUI	LUS		15	5				
Curvatu Envelop	re–Ca es-Ap	artesian and Polar coordinates – Centre of curvature, Circle of curvature oplications.	- E	volu	ites a	and				
UNIT	3	FUNCTIONS OF SEVERAL VARIABLES			15	5				
Function Taylor's Multipli	n of tv expa er me	wo variables – Partial derivatives – Total derivative – Change of Variab ansion – Maxima and Minima – Constrained Maxima and Minima athod-Applications.	les - by	- Jac Lag	obia rang	ns- jan				
UNIT	4	ORDINARY DIFFERENTIAL EQUATIONS			15					
Linear d of paran homoge constant	iffere neter neous coeff	ntial equations of second and higher order with constant coefficients – Me s – Equations reducible to linear equations with constant coefficies inear equation and Legendre's linear equation – Simultaneous linear ficients - Applications.	thod ents · equ	of v : C atio	ariat auch ns w	ion y's vith				
		ΤΟΤΑΙ	.: 6 0	PE	RIO	DS				
On succ	essful	COURSE OUTCOMES: completion of the course, students will be able to								
CO1	Anal pract	yze the characteristics equation of a linear system with Eigen values and ical application.	vect	ors f	for					
CO2	Deter disci	rmine the bending of family of curves using differential calculus which d plines.	eals	in v	ariou	IS				
CO3	Appl	y partial derivatives in various engineering problems.								
CO4	Ident	ify and solve the real time problems using higher order differential equat	ions	•						

REFERENCES

- 1. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.
- 2. Grewal.B.S, Higher Engineering Mathematics, Khanna Publications, 42nd Edition, 2012.
- 3. Veerarajan.T, "Engineering Mathematics I", Tata McGraw Hill Publishing Co, New Delhi, 5th edition, 2006.
- 4. Kandasamy, P., Thilagavathy, K., Gunavathy, K., "Engineering Mathematics", Vol. I (4th revised edition), S. Chand & Co, New Delhi, 2000.

COURSE CODE	COURSE NAME	L	Т	Р	С				
191PH01	ENGINEERING PHYSICS	3	0	0	3				
	COURSE OBJECTIVES								
• The c sense	• The course aims to equip engineering undergraduates with principles of Physics in a broader sense with a view to lay foundation for the various engineering courses								
UNIT 1	PROPERTIES OF SOLIDS								
Elasticity- Hooke's law – stress -strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- Young's modulus by non-uniform bending (Theory and Experiment) - Torsional stress and twisting couple- Torsional Pendulum ((Theory and Experiment) I-shaped girders.									
UNIT 2	PRINCIPLES OF LASERS			Ç)				
Properties of Types of lase modes of He Industry and	Properties of laser radiation and their significance-wavelength, power, monochromaticity, coherence. Types of lasers working media and their radiation characteristics-Power, wavelength and operational modes of He-Ne, Carbon-dioxide. Physical principles of Laser beam delivery systems. Applications- Industry and Medical. Selection of lasers for various applications.								
UNIT 3	OPTICAL FIBRE SYSTEMS			9	•				
Optical Fibra Acceptance c (Temperature fiber- Endosc	Optical Fibres- Propagation mechanism -Critical Angle- Snell's Law-Total Internal Reflection Acceptance cone- Numerical aperture- Types of fibers- Attenuation-Active and passive fibre sensors (Temperature and Displacement)- Applications (Industry and Medical) - communication in optical fiber- Endoscope.								
UNIT 4	WAVE NATURE OF PARTICLES			9	•				
Introduction (Theory and Schrodinger of in a box-SEM	to Quantum mechanics, Black body radiation- Planck's Hypothesis- Experiment) -Wave nature of Particles, Time-dependent and ti equation for wave function, Schrodinger equation for one dimensional pro I and TEM.	Com me-: oble	ptor inde ms–	n Eff pend parti	fect lent icle				
UNIT 5	SOLID STATE PHYSICS			Ģ)				
Crystalline an indices – Exp Coordination graphite struc	nd non crystalline materials-Lattice – Unit cell – Bravais lattice – Lattice pression for inter planar spacing- Bragg's law- Diffraction of X-rays by number. Atomic packing factors (SC, FCC, BCC and HCP structures) etures (qualitative treatment) -Crystal growth techniques (Bridgman and C	plar crys – D Czoc	nes - stal j iamo hrals	– Mi plane ond a ski).	ller es - and				
TOTAL: 45 PERIODS									
	COURSE OUTCOMES:								
On successfu	l completion of the course, students will be able to								
CO1 Dem	onstrate the proficiency on the properties of matter and its applications								
17									

CO)2	Describe the working principles of Laser and its developments in industrial and medical applications
CO3		Explain the propagation of waves in optical fibres and their applications
CO4		Apply the theory of wave nature of particles in various microscopic applications
CO5		Analyze the structure of materials and its crystal growth techniques
		REFERENCES
1.	R.K New	. Gaur and S.L. Gupta, "Engineering Physics", Dhanpat Rai Publications (P) Ltd., 8th Edition. V Delhi, 2001.
2.	Cha	rles Kittel, "Introduction to Solid State Physics", 7 th Edition, Wiley, Delhi 2007.
3.	Hall	iday, D., Resnick, R. and Walker, J., "Principles of Physics", Wiley, 2015.
4.	Will 2004	liam T. Silfvast, "Laser Fundamentals", 2 nd Edition, Cambridge University press, New York, 4.
5.	D. H Son	Halliday, R. Resnick and J. Walker, "Fundamentals of Physics", 6 th Edition, , John Wiley and s, New York 2001.
_		

6. E. Hecht, Optics, Pearson Education, 2008.

COURSE CODE	COURSE NAME	L	Т	Р	С				
191CH101	ENGINEERING CHEMISTRY	3	0	0	3				
	COURSE OBJECTIVES								
• To a atom treat	• To acquaint the students with the new developments of microscopic chemistry in terms of atomic, molecular, orbital and intermolecular forces and acquire the knowledge of water treatment and instrumentation of advanced materials.								
UNIT 1	CHEMICAL BONDING			Ģ	•				
Types of che Interactions bond – free stoichiometr Frenkel defe	Types of chemical bonds - bond polarity- dipole moment – partial ionic character - consequences. Weak Interactions – Hydrogen bonding, Van der Waals forces - influence on properties of matter. Metallic bond – free electron theory, MO treatment - band theory-metals, semiconductors and insulators. Non stoichiometric semiconductors, chalgogen semiconductors. Defect structures of crystals – Schottky and Frenkel defects.								
UNIT 2	WATER CHEMISTRY			Ģ	•				
Hardness - c Desalination parameters, photocolorin	Hardness - determination (EDTA method). Water softening - zeolite and demineralization processes. Desalination by electro-dialysis and reverse osmosis. Water analysis by fluoride ion, Water quality parameters, Instrumental methods for water analysis- AAS, flame emission spectroscopy, ICP-MS and photocolorimetry.								
UNIT 3	ELECTROCHEMISTRY			Ģ	•				
Electrode po Galvanic an measuremen conductome	otential – standard and reference electrodes, Nernst equation, emf series d concentration cells. Applications of potential measurements – glass t, acid- base titration, redox titration. Conductance measurement – tric titrations.	– a elec app	pplic trod	catic e - tions	ons. pH 3 –				
UNIT 4	POLYMERS			Ģ	•				
Classificatio Glass transit compoundin Charge trans for LED and	Classification, degree of polymerization, molecular weight – Mn and Mw. Polymerization reactions. Glass transition temperature – factors affecting Tg - determination by DSC. Polymer processing - compounding, outline of moulding techniques compression, injection, extrusion and blow moulding. Charge transport in conjugated polymers - doped conjugated polymers - glucose biosensor. Polymers for LED and LCD displays.								
UNIT 5	UNIT 5 ADVANCED MATERIALS								
Carbon nam applications - energy sto insulating m	Carbon nanotubes and carbon fibres, graphene and polymer nano-composites-properties and applications - morphological studies by SEM and TEM. Solid oxide materials and polymer electrolytes - energy storing applications. Polymer blends and alloys, photo and electroluminescence materials, insulating materials, photopolymers and photoresists for electronics, polymer photovoltaics.								

	TOTAL: 45 PERIODS							
On	COURSE OUTCOMES: On successful completion of the course, students will be able to							
CO	Analyse microscopic chemistry in terms of atomic, molecular and Intermolecular forces for real time applications of semiconductors.							
CO	2 Investigate the various water treatment and softening methods.							
CO	3 Appraise the types and mechanism of electrochemical reaction in batteries and fuel cells.							
CO	Explain the basic principle, types and mechanism of polymerization process and techniques.							
CO	5 Assess the properties, characterization and applications of advanced materials for energy storage.							
	REFERENCES							
1.	Mary Jane Shultz, "Engineering Chemistry", Cengage Learning, USA, 2009.							
2.	 Palanna O. G., "Engineering Chemistry", Tata Mc.Graw Hill Education Pvt. Ltd., New Delhi, 2009. 							
3. Gesser, H.D., "Applied Chemistry - A Textbook for Engineers and Technologies", Springer 2008.								
3.	Gesser, H.D., "Applied Chemistry - A Textbook for Engineers and Technologies", Springer, NY, 2008.							
 3. 4. 	Gesser, H.D., "Applied Chemistry - A Textbook for Engineers and Technologies", Springer, NY, 2008. Gowarikar V. R., Viswanathan N.V. and Jayadev Sreedhar, "Polymer Science", New Age International Pvt. Ltd., New Delhi, 2011.							
 3. 4. 5. 	Gesser, H.D., "Applied Chemistry - A Textbook for Engineers and Technologies", Springer, NY, 2008. Gowarikar V. R., Viswanathan N.V. and Jayadev Sreedhar, "Polymer Science", New Age International Pvt. Ltd., New Delhi, 2011. Vijayamohanan K. Pillai and Meera Parthasarathy. "Functional Materials - A Chemist's Perspective" Universities Press, India, 2012.							

COURSE CODE	COURSE NAME	L	Т	Р	С					
191HS101	ENGLISH FOR ENGINEERING STUDENTS	3	0	0	3					
	COURSE OBJECTIVES									
• Equip	• Equip students with the English language skills required for the successful undertaking of academic studies.									
• Impro	ove general and academic listening skills.									
• Provi speci	• Provide guidance and practice in basic geranial and classroom conversation and to engage in specific academic speaking activities.									
• Stren	gthen the reading and writing skills of students of engineering									
UNIT 1	VOCABULARY BUILDING			9)					
Word format – Compound	ion - Prefixes and Suffixes – Root words from foreign languages – S Nouns – Standard Abbreviations.	Synon	yms –	Antor	nyms					
UNIT 2	GRAMMATICAL COMPETENCY			9						
Noun, Verb, Model Verbs	Adjective – Subject-Verb Agreement – Articles – Prepositions –	Purpo	se exp	pressio	ons –					
UNIT 3	BASIC WRITING SKILLS			9						
Sentence str Writing (Des	acture – Phrases – Clauses – Coherence – Cohesion (using linking criptive and Narrative).	ng wo	rds) –	Parag	graph					
UNIT 4	READING SKILLS			ç)					
Reading Stra and open end	tegies – Skimming and Scanning – Reading Comprehension exercise led questions – Transforming Information in the form of charts – N	es witl ote M	n mult aking.	iple cl	noice					
UNIT 5	ORAL COMMUNICATION			9	•					
(This unit in	volves interactive practice sessions in Language Lab)									
Listir	ng Comprehension									
Pronu	inciation, Syllable and Stress, Rhythm and Intonation									
• Gene	ral conversations and dialogues, common in everyday situations									
Short	Speech									
	TOTAL: 45 PERIODS									

	COURSE OUTCOMES:							
On suc	On successful completion of the course, students will be able to							
CO1 Infer meanings of unfamiliar words from context								
CO2	Enable to achieve linguistic competence and be able to use grammar as a tool or resource in the comprehension and creation of oral and written discourse efficiently according to the situation.							
CO3	Write cohesively, coherently and flawlessly with a wide range of vocabulary and organizing their ideas logically on a topic.							
CO4	Activate and reinforce the habit of reading and writing effectively in their discipline.							
CO5	Collaborate with multicultural environment							
	REFERENCES							
1. De	partment of English, Anna University, Mindscapes: English for Technologists and Engineers,							
Ori	ent Blackswan, Chennai – 2012.							
2. Dh	anavel, S. P. English and Communication Skills for Students of Science and Engineering,							
Ori	ent Blackswan, Chennai, 2011.							
3. Co	mmunication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.							
4. Pra	ctical English Usage. Michael Swan, OUP, 1995.							
5. Re:	5. Remedial English Grammar. F.T. Wood. Macmillan.2007.							
6. Stu	dy Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.							
7. Ex	ercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press, 2011.							

COURSE CODE	COURSE NAME	L	Т	Р	С				
191ME111	BASIC CIVIL AND MECHANICAL ENGINEERING	3	0	0	3				
COURSE OBJECTIVES									
• To create awareness on fundamental knowledge on various domains of civil engineering									
• To in	troduce the sources of water and treatment of water and sewage treatme	ent							
• To in	troduce the fundamentals of power plant engineering								
• To in	troduce the fundamentals of IC engines								
• To in	troduce the fundamentals of energy resources and refrigeration cycles								
	A. BASICS OF CIVIL ENGINEERING								
UNIT 1	SCOPE OF CIVIL ENGINEERING			ç)				
Introduction Properties, c concrete, rein	Introduction – Functions and role of Civil Engineer- Branches of Civil Engineering. Materials – Properties, classification and characteristics of building stones, bricks, timber, cement and cement concrete, reinforcing steel- Components of residential building. Foundation – Types and necessity.								
UNIT 2	WATER RESOURCES & ENVIRONMENTAL ENGINEER	ING		9)				
Sources of w harvesting Sewerage - c	vater – Hydrologic cycle – Rain water harvesting – importance – met Water demand estimation – quality of water – Treatment of water- collection, treatment and disposal of sewage – Septic tanks.	hods Wate	of ra r dist	iin w tribut	ater ion.				
	B. BASICS OF MECHANICAL ENGINEERING								
UNIT 3	POWER PLANTS, PUMPS AND TURBINES			9)				
Introduction Hydro-electr working prin	to Power Plant, Classification of Power Plants – Working principle of s ic, Geo-thermal and Nuclear Power plants – Merits and Demerits. Pur ciple of single acting and double acting reciprocating pumps – Centrifu	steam nps a gal P	, Gas and tu Pump	s, Die arbino	esel, es –				
UNIT 4	IC ENGINES			9)				
Introduction stroke and tw	to Internal combustion engines – Working principle of Petrol and Dies to stroke cycles – Comparison of four stroke and two stroke engines.	sel E	ngine	es – F	Four				
UNIT 5	UNIT 5RENEWABLE ENERGY AND REFRIGIRATION9								
Introduction Energy Stor refrigeration	Introduction to renewable energy sources - Non renewable energy sources-Comparison of Electrical Energy Storage Technologies. Vapour compression Refrigeration system, Vapour absorption refrigeration system.								

COURSE OUTCOMES:

On successful completion of the course, students will be able to

- **CO1** Explain the usage of construction material and proper selection of construction materials
- **CO2** Explain about water resources, sewage treatment and transportation systems
- **CO3** | Explain about the components use in power plants
- **CO4** Describe the internal combustion engines

CO5 Explain about the renewable energy sources and refrigeration cycles

REFERENCES:

- 1. Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engineering", TataMcGraw Hill Publishing Co., New Delhi, 1996.
- 2. T. Jha and S.K. Sinha, "Construction and Foundation Engineering", Khanna publishers, Delhi, 2003.
- 3. S.K. Garg, "Water Supply Engineering", Khanna publishers, Delhi, 2005
- 4. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co. (P) Ltd. 1999.
- 5. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, 2005.
- 6. Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, 2000.

COURSE CODE	COURSE NAME	L	Т	Р	С				
191EE111	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	3	0	0	3				
COURSE OBJECTIVES									
• To understand the structure of Electric Power Systems									
• To exe	• To execute safety precautions								
• To kn	ow about construction of meters								
• To un	derstand about Electronics and Communication systems								
A. ELECTRICAL ENGINEERING									
UNIT 1	INDIAN ELECTRICITY SCENARIO			9	•				
Electric Power-Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)- Regulatory Authorities governing Indian Electricity Protection & Safety-Hazards of electricity-shock, effects of electricity on the human body. Electrical safety practices, Protection devices.									
UNIT 2	BASICS OF ELECTRICAL COMPONENTS			9)				
Evolution of energy, DC, Vector diagra	Electricity and Electrical inventions-Charge, Electric potential, voltage, AC, time period, frequency, phase, flux, flux density, RMS, Average, m.	curi Peak	rent, c, Pł	pow 1asor	ver, : &				
UNIT 3	BASIC LAWS OF ELECTRIC SYSTEMS& MEASUREMENT	ГS		9	•				
Electric Circu illustrativeexa	nits – Passive components (RLC), Ohm's law, KCL, KVL, Faraday's la amples- Analog Moving Iron, Moving Coil and Digital meters–Types and	aw, 1 I usa	Lenz Ige.	z's la	iw-				
	B. ELECTRONICS ENGINEERING								
UNIT 4	BASICS ELECTRONICS			9)				
Electrical Vs reverse bias, 7 &IC-Basic A Receiver)	Electrical Vs Electronics, Electronic products and systems, Electronic Devices (Diode–Forward bias, reverse bias, Transistor (CE, CB, CC), Electronic components, Electronic Circuits-Rectifier, Regulator &IC-Basic Amplifiers and Oscillators- Communication system Block diagram (Transmitter and Receiver)								
UNIT 5	BASICS OF COMMUNICATION ENGINEERING			9)				
Amplitude M modulation-F	Amplitude Modulation–AM, DSBSC, SSBSC, VSB–PSD, modulators and demodulators–Angle modulation–PM and FM–PSD.								

	TOTAL: 45 PERIODS				
COURSE OUTCOMES					
On suce	On successful completion of the course, students will be able to				
CO1	Summarizes about different structures of Power system and safety measures.				
CO2	Explain about the basics of Electricity				
CO3	Discuss on various electric circuits and use of measuring instruments				
CO4	Clarify the working of basic electronic devices such as diode, transistor and operational amplifiers				
CO5	Infer about Digital Electronics and Communication System				
REFERENCES					
1. Alb 2. Sim 3. M.S 4 M	ert Paul Malvino, "ElectronicPrinciples", TataMcgrawHill, 2002 on Haykin, "CommunicationSystems", WileyEastern, ThirdEdition, 1996 S. Sukhija and T.K. Nagsarkar, Basic Electrical and Electronic Engineering, Oxford, 2016. Morris Mano, Digital Design, Third Edition, Pearson Publication				

COUR COD	SE E	COURSE NAME	L	Т	Р	С
191PH	10A	PHYSICS LABORATORY	0	0	2	1
		COURSE OBJECTIVES				
•	Studer may u	nts will be able to demonstrate an understanding of the scientific meth se the training beneficial in their higher pursuits	od, s	o that	they	
		LIST OF EXPERIMENTS				
1. Dete	ermina	ation of Rigidity modulus – Torsion pendulum.				
2. Dete	ermina	ation of Young's modulus by non-uniform bending method.				
3. Det Exp	ermin erime	ation of Planck's Constant and work function of materials using photont.	o elec	tric e	effect	
4. Dete	ermina	ation of wavelength, and particle size using Laser.				
5. Dete	ermina	ation of acceptance angle in an optical fiber.				
Den	nonst	ration:				
1. Dete	ermina	ation of wavelength of mercury spectrum – spectrometer grating.				
2. Den	nonstr	ation of Crystal Growth Technique.				
3. Dete	ermina	ation of fiber thickness – Air Wedge method.				
		ТОТ	'AL:	30 PI	ERIC	DDS
		COURSE OUTCOMES				
On succ	essful	l completion of the course, students will be able to				
CO1	Appl	y the principles of properties of matter in determining the various elas	stic pi	oper	ties	
CO2	Have	e the hands on exercises which helps them to apply principles of optics	8			
CO3	Attai	ns the basic understanding of concepts of quantum mechanics				
		REFERENCE				
1. Wils Con	 Wilson J.D. and Hernandez C.A., -"Physics Laboratory Experiments", Houghton Mifflin Company, New York 2005. 					

COUR COD	RSE DE	COURSE NAME	L	Т	Р	С
191CH	10A	CHEMISTRY LABORATORY	0	0	2	1
		COURSE OBJECTIVES				
To enab	ole the	students to understand the basic concepts involved in the analyses				
		LIST OF EXPERIMENTS				
1. 1	Detern	nination of total, permanent, temporary, calcium and magnesium hardr	ness (of wa	iter b	у
]	EDTA	method.				
2.	Condu	ctometric titration - determination of strength of an acid.				
3.	Estima	ation of iron by potentiometry.				
4.	Detern	nination of molecular weight of polymer by viscosity average method.				
5.	Detern	nination of dissolved oxygen in a water sample by Winkler's method.				
6.	Detern	nination of Na / K in water sample by Flame photometry (Demonstrati	on).			
7. 1	Estima	ation of Copper in ore				
8. 1	Estima	ation of nickel in steel.				
9. 1	Detern	nination of total alkalinity and acidity of a water sample.				
10.1	Detern	nination of rate of corrosion by weight loss method.				
		TOTA	4L: 3	30 PI	ERIC	DDS
		COURSE OUTCOMES				
On succ	cessful	completion of the course, students will be able to				
CO1	Acqu metho	ire knowledge on quantitative chemical analysis by instrumentation an od	ıd vo	lume	tric	
CO2	Analy oxyg	yze the water sample for hardness, chloride, sodium /potassium conten en etc.	t, dis	solve	ed	
CO3	Solve quant	e analytical problems in spectrometer and flame photometer for the ide	ntific	catior	n and	
		REFERENCE				
1.	Vogel	's Textbook of quantitative chemical Analysis (8th edition, 2014)				

COURSE CODE	COURSE NAME	L	Т	Р	C
191MA201	ENGINEERING MATHEMATICS II	2	2	0	3
	COURSE OBJECTIVES				
• To un multip	To understand double and triple integrations and enable them to find area and volume using multiple integrals.				7
• To kn surfac	ow the basics of vector calculus comprising gradient, divergence and cu e and volume integrals.	rl an	d lin	e,	
• To un	derstand analytic functions of complex variables and conformal mapping	gs.			
• To kn	ow the basics of residues, complex integration and contour integration.				
• To un their t	derstand Laplace transform and use it to represent system dynamic mode ime responses.	els a	nd ev	valua	ites
UNIT 1	MULTIPLE INTEGRALS			1	12
Double integ integration in	ration – Cartesian and polar coordinates – Change of order of incartesian coordinates.	tegra	tion	-Tr	iple
UNIT 2	VECTOR CALCULUS			1	12
Gradient, div Simple proble divergence th	ergence and curl – Directional derivative – Irrotational and solenoid ems on Vector differentiation–Vector integration - Green's theorem i eorem and Stoke's theorem (excluding proofs).	alve na j	ector plane	field , Ga	ls - iuss
UNIT 3	ANALYTIC FUNCTION			1	12
Functions of equations in 0 function – Co + c , cz , 1/ z	Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy- Riemann equations in Cartesian coordinates and sufficient conditions (excluding proofs)– Properties of analytic function – Construction of analytic function by Milne Thomson method – Conformal mapping : $w = z + c$, cz , $1/z$ and bilinear transformation.				
UNIT 4	COMPLEX INTEGRATION			1	2
Statement and applications of Cauchy's integral theorem and Cauchy's integral formula (excluding proofs) – Taylor's and Laurent's series expansions – Singularities – Residues – Cauchy's residue theorem (excluding proof) – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).					
UNIT 5	LAPLACE TRANSFORM			1	12
Laplace transform –Sufficient condition for existence –Transform of elementary functions – Basic properties – Transforms of unit step function and impulse functions –Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem –Initial and final value theorems–Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.					

COURSE OUTCOMES

On successful completion of the course, students will be able to

CO1	Evaluate multiple integrals using change of variables.
CO2	Apply various integral theorems for solving engineering problems involving cubes and rectangular parallelepipeds.
CO3	Construct analytic functions of complex variables and transform functions using conformal mappings.
CO4	Estimate the real and complex integrals over suitable closed paths and contours.
CO5	Compute solution of linear differential equations using Laplace transform techniques.

REFERENCES

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, Delhi, 42nd Edition, 2012.
- 2. Kreyzig E., Advanced Engineering Mathematics, John Wiley & Sons (Asia), Pvt, Ltd., Singapore, 10th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics (for First Year), Tata McGraw Hill, Pub. Co. Ltd., New Delhi, Revised Edition, 2007.
- 4. Venkataraman M.K., Engineering Mathematics, Volume II, The National Pub. Co., Chennai, 2003.

5. Kandasamy P., Thilagavathy K. and Gunavathy K., Engineering Mathematics, S. Chand & Co., New Delhi, 2008.

6. Arunachalam T. and Sumathi K., Engineering Mathematics II, Sri Vignesh Publications, Coimbatore, Third Edition, 2011.

COURSE CODE	COURSE NAME	L	Т	Р	С
191PH204	MATERIALS SCIENCE FOR MECHANICAL ENGINEERING	3	0	0	3
	COURSE OBJECTIVES				
• To introduce the essential principles of materials science for Mechanical engineering applications and become proficient in magnetic, optical and new engineering properties of materials					
UNIT 1	MECHANICAL PROPERTIES				9
Concept of S Mechanical T test.	Stress and Strain, Elastic and Plastic Deformation, Creep, Hardness, Sesting of Materials: Brinell, Vickers and Rockwell Hardness test, Tensil	Tens e tes	ile S t and	Streng Fati	gth. gue
UNIT 2	MAGNETIC MATERIALS				9
Magnetic Pro materials-Dia materials.	operties: Permeability, Susceptibility and Magnetic Intensity Classifica , Para, Ferro, Antiferro and Ferrites- Domain Theory-Hysteresis- Hard a	ition and S	of n oft r	nagn nagn	etic etic
UNIT 3	DIELECTRIC MATERIALS				9
Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization-Internal field-ClaussiusMosotti Relation- Dielectric Loss-Dielectric Breakdown- Uses of dielectrics (Capacitors and Transformers).					
Dielectric Co Polarization-I dielectrics (C	onstant-Electronic, Ionic and Orientation - Frequency and Temperatur Internal field-ClaussiusMosotti Relation- Dielectric Loss-Dielectric Bre apacitors and Transformers).	e de akdo	penc wn-	lence Uses	e of s of
Dielectric Co Polarization-J dielectrics (C UNIT 4	onstant-Electronic, Ionic and Orientation - Frequency and Temperatur Internal field-ClaussiusMosotti Relation- Dielectric Loss-Dielectric Bre apacitors and Transformers). THERMAL PROPERTIES	e de akdo	penc own-	lence Uses	e of s of 9
Dielectric Co Polarization-I dielectrics (C UNIT 4 Heat Capacit (conduction, o Parallel)-Exp properties of	erimental determination – Erequency and Temperature enstant-Electronic, Ionic and Orientation - Frequency and Temperature internal field-ClaussiusMosotti Relation- Dielectric Loss-Dielectric Bre apacitors and Transformers). THERMAL PROPERTIES y and Conductivity. Bimetallic strips and its application-Heat cond convection and radiation)– Thermal conductivity –Through a compound serimental determination Lee's disc method: theory and experiment – C Insulating materials	e de akdo uctio medi lassi	penc own- ons i a (Se ficat	lence Uses n so eries ions	e of s of 9 lids and and
Dielectric Co Polarization-J dielectrics (C UNIT 4 Heat Capacit (conduction, o Parallel)-Exp properties of UNIT 5	Anstant-Electronic, Ionic and Orientation - Frequency and Temperature Internal field-ClaussiusMosotti Relation- Dielectric Loss-Dielectric Brea apacitors and Transformers). THERMAL PROPERTIES y and Conductivity. Bimetallic strips and its application-Heat cond convection and radiation)– Thermal conductivity –Through a compound a erimental determination Lee's disc method: theory and experiment – C Insulating materials NEW ENGINEERING MATERIALS	re de akdo uctio medi lassi	own- ons i a (Se ficat	lence Uses n so eries ions	e of s of 9 lids and and 9
Dielectric Co Polarization-J dielectrics (C UNIT 4 Heat Capacit (conduction, o Parallel)-Exp properties of UNIT 5 Metallic Glas alloys (SMA) Applications.	Anstant-Electronic, Ionic and Orientation - Frequency and Temperature Internal field-ClaussiusMosotti Relation- Dielectric Loss-Dielectric Brea apacitors and Transformers). THERMAL PROPERTIES y and Conductivity. Bimetallic strips and its application-Heat cond convection and radiation)– Thermal conductivity –Through a compound a erimental determination Lee's disc method: theory and experiment – C Insulating materials NEW ENGINEERING MATERIALS Sees-Types of metallic glasses-Preparation Properties and applications 0-Types- Application of SMA- Superconductors- High Temperature Sup-	re de akdo uctio medi lassi - Sh perco	ons i a (Se ficat	lence Uses n so eries ions mem ctor	e of s of g lids and and g ory and
Dielectric Co Polarization-J dielectrics (C UNIT 4 Heat Capacit (conduction, o Parallel)-Exp properties of UNIT 5 Metallic Glas alloys (SMA) Applications. DEMO EXP	Instant-Electronic, Ionic and Orientation - Frequency and Temperatur Internal field-ClaussiusMosotti Relation- Dielectric Loss-Dielectric Bre apacitors and Transformers). THERMAL PROPERTIES y and Conductivity. Bimetallic strips and its application-Heat cond convection and radiation)– Thermal conductivity –Through a compound a erimental determination Lee's disc method: theory and experiment – C Insulating materials NEW ENGINEERING MATERIALS esses-Types of metallic glasses-Preparation Properties and applications p-Types- Application of SMA- Superconductors- High Temperature Super- ERIMENTS:	re de akdo uctio medi lassi - Sh perco	ons i a (Se fication ape	lence Uses n so eries ions mem ctor	e of s of g lids and and g
Dielectric Co Polarization-J dielectrics (C UNIT 4 Heat Capacit (conduction, o Parallel)-Exp properties of UNIT 5 Metallic Glas alloys (SMA) Applications. DEMO EXP 1. Band gap o	Instant-Electronic, Ionic and Orientation - Frequency and Temperature Internal field-ClaussiusMosotti Relation- Dielectric Loss-Dielectric Breapacitors and Transformers). THERMAL PROPERTIES y and Conductivity. Bimetallic strips and its application-Heat cond convection and radiation)– Thermal conductivity –Through a compound is erimental determination Lee's disc method: theory and experiment – C Insulating materials NEW ENGINEERING MATERIALS Sees-Types of metallic glasses-Preparation Properties and applications o-Types- Application of SMA- Superconductors- High Temperature Super- ERIMENTS: of a semiconductor	re de akdo uctio medi lassi - Sh perco	oms i a (Se fication ape	lence Uses n so eries ions mem ctor	e of s of g lids and and ory and

3. Ultra	sonic Interferometer used to find the velocity and compressibility of the liquid				
	TOTAL: 45 PERIODS				
	COURSE OUTCOMES				
On successful completion of the course, students will be able to					
CO1	Illustrate the adequate concepts of mechanical properties of materials and their measurements				
	Examine the importance of magnetic materials in engineering fields by projecting the view of				
CO2	its applications				
	Analyze the fundamentals of various dielectric materials, their properties and applications in				
CO3	advanced technologies				
	Describe the significance of thermal properties of materials in advanced engineering				
CO4	technologies				
	Assimilate recent technological developments, used in creating products from various new				
CO5	engineering materials				
	REFERENCES				
1. Van	Vlack L.H., "Elements of Materials Science and Engineering", 6th Edition, Addison- Wesley,				
2. Wil Mc	9. liam F Smith, JavadHashemi, Ravi Prakash, "Materials Science and Engineering", Tata Graw Hill Private Limited, 4th Edition, 2008.				

COURSE CODE	COURSE NAME	L	Т	Р	C	
191HS201	ENVIRONMENTAL SCIENCE AND ENGINEERING	3	0	0	3	
	COURSE OBJECTIVES					
• To pro of nat	• To provide the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices.					
• To des	scribe the need to lead more sustainable lifestyles, to use resources more	equ	iitab	ly.		
• To he includ	lps to create a concern for our environment that will trigger pro-envir ing activities we can do in our daily life to protect it.	onm	ienta	al ac	tion,	
• To dea	al the social issues and ethics to develop quality engineer in our country.					
UNIT 1	ENVIRONMENT - AN OVERVIEW				9	
Ecosystem-co conservation- resources- typ	ncept-structure-function-types. Energy flow in ecosystem. Biodi values of biodiversity-threats to biodiversity conservation of biod es, uses.	vers	ity sity.	and Na	its tural	
UNIT 2	ENVIRONMENTAL IMPACT OF ENERGY SOURCES				9	
Sources of pri development- problems rela	mary energy- present and future consumption of energy- environmental i oil, natural gas, coal, hydro electric, nuclear power, wind mill and sol ted to energy - case studies.	mpa ar p	icts o anel	of en s- U	ergy Irban	
UNIT 3	CLIMATIC CHANGE AND SOLID WASTE MANAGEMEN	JT			9	
Environmenta global warmi preventive me individuals. S waste-sources	Environmental pollution- air, water, soil, marine and noise pollution-green house gases- causes, effects- global warming, ozone layer depletion, acid rain-sources and effects. Pollution control strategies- preventive measures- green technologies-green building concepts- standards and regulations- role of individuals. Sustainable development. Hazardous wastes- e-waste- source-effect, management. Nuclear waste-sources, effects, management. Recycling of waste. Future challenges.					
UNIT 4	HUMAN POPULATION AND THE ENVIRONMENT				9	
Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and child welfare – role of information technology in environment and human health – Case studies.						
UNIT 5	ENVIRONMENTAL LAWS AND ETHICS				9	
Legal provision in India- environmental acts-air, water, forest, soil and wildlife. Environmental ethics- theories and codes- resource consumption patterns, equity-disparity, urban-rural equity issues, need for gender equity, preserving resource for future generation, right of animals, ethical basis of environment education and awareness, ethical problem solving- changing attitude, conservation ethics and traditional value systems of India. Effect of social media on the adolescent.						

	TOTAL: 45 PERIOD				
	COURSE OUTCOMES				
On successful completion of the course, students will be able to					
CO1	Interpret the concept of ecosystem, biodiversity and its conservation.				
CO2	Demonstrate the environmental impacts of energy development.				
CO3	Categorize the various environmental pollutions and select suitable preventive measures.				
CO4	Perceive the environmental effects of human population and the implementation of welfare programs.				
CO5	Recall the environmental ethics and legal provisions.				
REFERENCES					

- 1. Erach Bharucha, "Text book for Environmental sciences for Undergraduate courses", UGC, 2004.
- 2. Kaushik, A & Kaushik, CP, Environmental Science and engineering", 3rd Edition, New Age International (P) Limited, New Delhi, 2009.

- Henry, JG &Heinke, GW, "Environmental Science and Engineering", 2nd Edition, PHI Learning Private limited, New Delhi, 2011. 3.
- 4. Masters, GM & Ela, WP, "Introduction to Environmental Engineering and Science", 3rd Edition, PHI Learning Private limited, New Delhi, 2009.
- Encyclopedia of environmental ethics and philosophy. Available at www.gmu.ac.ir/download/ 5. booklibrary/e-library/Encyclopedia of Environmental Ethics and philosophy.pdf

34

COURSE CODE	COURSE NAME	L	Т	Р	С	
191ME211	ENGINEERING GRAPHICS	2	2	0	3	
	COURSE OBJECTIVES					
• To co	onvey the basics of engineering drawing of curves and concepts of free h	and	sket	chin	ıg	
• To tea surfac	• To teach different methods of making views of simple objects resembling points, lines and surfaces					
• To rel	ate the visualizations of simple solid objects as per principles of orthogra	aphi	c pro	ojec	tion	
• To est	ablish the importance of sections and developments made in drawing					
• To de	velop an intuitive understanding of underlying significance of using pict	oria	l dra	win	gs	
	CONCEPTS AND CONVENTIONS (Not for Examination)					
Introduction drafting instru	to engineering graphics- Importance of graphics in engineering application application application of drawing sheets. BIS Standards - Lettering an	catic d di	ons - men	- Us sion	se of ing.	
UNIT 1	PLANE CURVES AND FREE HAND SKETCHING				12	
cycloid – con curves. Visua Three Dimensisingle pictoria	struction of involutes of square and circle – Drawing of tangents and non- lization concepts and Free Hand sketching: Visualization principles – sional objects – Layout of views-Free hand sketching of multiple orthogr al view of objects.	rmai Repr aphi	esen c vie	ne a tatic ews	bove on of from	
UNIT 2	PROJECTION OF POINTS, LINES AND PLANE SURFAC	ES			12	
Orthographic of points loc Determination (regular polys	projections - Introduction - Principles -Principal planes-First angle projected in all quadrants. Projection of straight lines inclined to both the n of true lengths and true inclinations by rotating line method, traces. Progonal and circular surfaces) inclined to both the principal planes by rotating	ectio prin oject ng ol	on. Pa cipa cion o oject	roje 1 pla of pl me	ction anes, lanes thod.	
UNIT 3	PROJECTION OF SOLIDS				12	
Projection of inclined to on	simple solids like prisms, pyramids, cylinder, cone and truncated solids the of the principal planes by rotating object method.	wh	en th	ie az	xis is	
UNIT 4	SECTION OF SOLIDS & DEVELOPMENT OF LATERAL SUP OF SOLIDS	RFA	CE		12	
Sectioning of simple solids in vertical position when the cutting plane is inclined to one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids like Prisms, pyramids, cylinders and cones.						
UNIT 5	ISOMETRIC AND PERSPECTIVE PROJECTIONS				12	
Principles of isometric projection – Isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, and cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids like Prisms, pyramids and cylinders by visual ray method.						

	TOTAL: 60 PERIODS					
	COURSE OUTCOMES:					
On successful completion of the course, students will be able to						
CO1	Draw engineering curves and apply the concepts of free hand sketching					
CO2	Draw orthographic views of points, lines and surfaces					
CO3	Draw visualizations of simple solid objects as per orthographic projections					
CO4	Draw sections and developments made in drawing					
CO5	Draw pictorial drawings of simple objects					
REFERENCES						
1. N	D. Bhatt, Engineering Drawing, 49 th edition, Charotar Publishing House, 2006.					
2. N	atarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.					

- 3. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 5. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
| COURSE
CODE | COURSE NAME | L | Т | Р | С |
|---|--|--------|--------|-------|-----|
| 191ME212 | ENGINEERING MECHANICS | 2 | 2 | 0 | 3 |
| | COURSE OBJECTIVES | | | | |
| • To de functi | evelop capacity to predict the forces and motion in the course of carryin
ons of engineering | ng ou | t the | des | ign |
| • To de | velop the understanding of forces using free body diagrams | | | | |
| • To su and a | ggest suitable methods for identifying properties of surfaces and solids fr
pply to moment of inertia | om fi | rst pi | rinci | ple |
| • To de | velop the concepts of dynamic forces in rigid body | | | | |
| • To int
subject | troduce the concepts of friction in simple systems, velocity and accelera cted to dynamic forces | tion i | n rigi | d bo | ody |
| UNIT 1 | STATICS OF PARTICLES | | | 1 | 2 |
| Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – Vectorial representation of forces – Vector operations of forces - additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility. | | | | | |
| UNIT 2 | EQUILIBRIUM OF RIGID BODIES | | | 1 | 2 |
| Free body diagram – Types of supports –Action and reaction forces –stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force - Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions. | | | | | |
| UNIT 3 | PROPERTIES OF SURFACES AND SOLIDS | | | 1 | 2 |
| Centroids and centre of mass – Centroids of lines and areas - Rectangular, circular, triangular areas by integration – T section, I section, - Angle section, Hollow section by using standard formula – Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem – Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia. | | | | | |
| UNIT 4 | DYNAMICS OF PARTICLES | | | 1 | 2 |

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion – Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.

UNIT 5

FRICTION AND RIGID BODY DYNAMICS

12

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

On successful completion of the course, students will be able to

CO1	Apply the vectorial and scalar representation of forces and moments to practical problems

CO2 Solve the equilibrium of rigid bodies in practical applications

CO3 Relate the moment related properties for simple surfaces and simple problems

CO4 Find dynamic forces exerted in rigid body in practical problems

CO5 Identify the conditions of static and dynamic bodies using laws of friction in practical problems

REFERENCES:

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing Company, New Delhi (2004).
- 2. Vela Murali, "Engineering Mechanics", Oxford University Press (2010)
- 3. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education, 2010.
- 4. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4th Edition, Pearson Education 2006.
- 5. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley & Sons, 1993.
- 6. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., 2005.
- 7. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers, 1998.
- 8. Kumar, K.L., "Engineering Mechanics", 3rd Ed, TataMcGrawHill Publishing Company, New Delhi 2008.

191ME221	MANUFACTURING TECHNOLOGY I	2	2	0	3
	COURSE OBJECTIVES				
• To intr	oduce about the pattern and concepts of metal casting processes				
• To intr	oduce the concepts of metal joining processes				
• To intr	oduce about various hot working and cold working methods of metals				
• To pro	vide knowledge on the drawing and sheet metal forming of metal comp	oner	ıts		
• To intr	oduce various methods of manufacturing plastic components				
UNIT 1	METAL CASTING PROCESSES			12	
Sand Casting and Propertion applications; M Shell - investric casting; Defec	Sand Mould – Type of patterns - Pattern Materials – Pattern allowan es and testing – Cores –Types and applications – Moulding machi Melting furnaces : Blast and Cupola Furnaces; Principle of special ca- nent – Ceramic mould – Pressure die casting - Centrifugal Casting - C ts in Sand casting.	ces nes- sting O2 j	–Mo - Ty g pro proc	ouldi /pes oces ess -	ing s and ses : –Stir
UNIT 2	METAL JOINING PROCESSES			12	
Operating prin welding - Typ metal arc we applications of – Friction wel cure.	nciple, basic equipment, merits and applications of: Fusion welding es – Flame characteristics; Manual metal arc welding – Gas Tungsten a lding – Submerged arc welding – Electro slag welding; Operatin f: Resistance welding - Plasma arc welding – Thermit welding – Electro ding and Friction Stir Welding; Brazing and soldering; Weld defects: t	; pro rc w g p on b ypes	ocess veldi rinci eam s, cau	ses: ng - iple wel uses	Gas Gas and ding and
UNIT 3	METAL FORMING PROCESSES			12	
Hot working a – forging oper – Defects in ro Types – Hot a	nd cold working of metals – Forging processes – Open, impression and c ations. Rolling of metals– Types of Rolling – Flat strip rolling – shape r lled parts. Principle of rod and wire drawing – Tube drawing – Principle nd Cold extrusion.	lose ollir es of	d die 1g op f Ex1	e for perat trusi	ging tions ion –
UNIT 4	SHEET METAL PROCESSES			12	
Sheet metal characteristics – shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods – special forming processes-Working principle and					

COURSE NAME

COURSE

CODE

applications - Hydro forming - Rubber pad forming - Metal spinning- Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming.

MANUFACTURE OF PLASTIC COMPONENTS UNIT 5

12

С

3

Р

L

Т

Types and characteristics of plastics – Moulding of thermoplastics – working principles and typical applications – injection moulding – Plunger and screw machines – Compression moulding, Transfer Moulding – Typical industrial applications – introduction to blow moulding –Rotational moulding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

On successful completion of the course, students will be able to

CO2 Compare different metal joining processes

CO3 Summarize various hot working and cold working methods of metals

CO4 Explain various sheet metal making processes.

CO5 Distinguish various methods of manufacturing plastic components

REFERENCES

- 1. Hajra Chouldhary S.K and Hajra Choudhury. AK., "Elements of workshop Technology", volume I and II, Media promoters and Publishers Private Limited, Mumbai, 2008.
- 2. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India Edition, 2013.
- 3. Gowri P. Hariharan, A.Suresh Babu, "Manufacturing Technology I", Pearson Education, 2008.
- 4. Paul Degarma E, Black J.T and Ronald A. Kosher, "Materials and Processes, in Manufacturing" Eight Edition, Prentice Hall of India, 1997.

5. Rao, P.N. "Manufacturing Technology Foundry, Forming and Welding", 4th Edition, TMH-2013

6. Roy. A. Lindberg, "Processes and Materials of Manufacture", PHI / Pearson education, 2006

7. Sharma, P.C., "A Text book of production Technology", S.Chand and Co. Ltd., 2014.

COURSE	
CODE	

COURSE NAME

191ME21A

ENGINEERING PRACTICES LABORATORY

COURSE OBJECTIVES

- To provide exposure to the students with hands-on experience on various basic engineering • practices in civil and mechanical engineering.
- To provide exposure to the students with hands-on experience on various basic engineering • practices in electrical and electronics engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings: (a) Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects.

Plumbing Works:

(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, and elbows in household fittings.

(b) Study of pipe connections requirements for pumps and turbines.

(c) Preparation of plumbing line sketches for water supply and sewage works.

(d) Hands-on-exercise: Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry (using power tools only):

(a) Study of the joints in roofs, doors, windows and furniture.

(b) Hands-on-exercise: Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding: welding.	(a) Preparation of butt joints, lap joints and T- joints by shielded metal arc
	(b) Gas welding practice
Basic Machining:	(a) Simple Turning and Taper turning
	(b) Drilling Practice
Sheet Metal Work:	(a) Forming & Bending:
	(b) Model making – Trays and funnels.
	(c) Different type of joints.

Machine assembly practice: (a) Study of centrifugal pump

(b) Study of air conditioner

Demonstration on:

(a) Smithy operations, upsetting, swaging, setting down and bending. Example -

Exercise – Production of hexagonal headed bolt.

(b) Foundry operations like mould preparation for gear and step cone pulley.

Fitting – Exercises – Preparation of square fitting and V – fitting models

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, RMS period, frequency) using CR.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR

TOTAL: 60 PERIODS

COURSE OUTCOMES:

On successful completion of the course, students will be able to

CO1	Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet meta
CO2	Use electrical and electronics engineering equipments to test the respective electrical and electronic parameters

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: <u>CIVIL</u>

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings	10 Nos.
2	Carpentry vice (fitted to work bench)	10 Sets
3	Standard woodworking tools	15 Each
4	Models of industrial trusses, door joints, furniture joints	5 Nos.
5	Power Tools: a) Rotary Hammer b) Demolition Hammer c) Circular Saw d) Planer e) Hand Drilling Machine f) Jigsaw	2 Nos. 2 Nos. 2 Nos. 2 Nos. 2 Nos.

MECHANICAL

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Arc welding transformer with cables and holders	5 Nos.
2	Welding booth with exhaust facility	5 Nos.
3	Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 Sets.
4	Oxygen and acetylene gas cylinders, blow pipe and other welding outfit	1 No.
5	Centre lathe	2 Nos.
6	Hearth furnace, anvil and smithy tools	2 Nos.
7	Moulding table, foundry tool	2 Nos.
8	Power Tool: Angle Grinder	2 Nos.
9	Study-purpose items: centrifugal pump, air-conditioner	One each

ELECTRICAL

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Assorted electrical components for house wiring	7 Sets
2	Electrical measuring instruments	10 Sets
3	Study purpose items: Iron box, fan and regulator, emergency lamp	1 each
4	Megger	1 No.

	5	
5	Digital Live-wire detector	1 No.

ELECTRONICS

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Soldering guns	10 Nos.
2	Assorted electronic components for making circuit	50 Nos.
3	Small PCBs	10 Nos.
4	Multimeters	10 Nos.
5	Study purpose items: Telephone, FM radio, AFO, CRO, RPS, meters	One each

COUR COD	SE E	COURSE NAME	L	Т	Р	С	
191MA	.305	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	2	2	0	3	
		COURSE OBJECTIVES					
• 7	• To introduce Fourier series analysis this is central to many applications in engineering apart from its use in solving boundary value problems.						
• 7	Го асс	quaint the student with Fourier series techniques used in wide variety of s	ituat	ions	5.		
• [Го int hat m	roduce the effective mathematical tools for the solutions of partial differ odel several physical processes.	enti	al ec	luati	ons	
UNIT	1	FOURIER SERIES			12		
Fourier Fourier	series series	- Dirichlet's conditions –Half range Fourier cosine and sine series – Pars in complex form – Harmonic analysis.	eval	's re	latio	n –	
UNIT	2	FOURIER TRANSFORMS			12		
Fourier theorem	transf and I	forms - pair – Fourier cosine and sine transforms – inverse transform Parseval's identity for Fourier transforms– Finite cosine and sine transfor	is - ms i	conv dent	volut ity.	ion	
UNIT	3	PARTIAL DIFFERENTIAL EQUATIONS		12			
Formation Second coefficie	on of and ents.	PDE - Solutions of standard types of first order equations - Lagrange's l higher order homogeneous and non-homogeneous linear equations	inea wi	r equ th c	uatio const	n – ant	
UNIT	4	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS	·I		12		
One din variable	nensio s – Fo	nal wave equation and one dimensional heat flow equation – Method of burier series solution.	sepa	ratic	on of		
UNIT	5	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS-	II		12		
Twodim - Metho	nensio d of s	nal heat flow equation in steady state. Laplace equation in Cartesian and p eparation of variables – Fourier series solution.	olar	COO 1	rdina	ates	
		ΤΟΤΑΙ	.: 60	PE	RIO	DS	
		COURSE OUTCOMES:					
On succ	essful	completion of the course, students will be able to					
CO1	Solve	e the given standard partial differential equations					

CO2	CO2 Solve differential equations using Fourier series analysis for engineering applications					
CO3	Apply mathematical principles on transforms and partial differential equations					
CO4	CO4 Solve one and two dimensional heat flow problems and wave equations using Fourier series					
CO5	Solve partial differential equations by using Z transform techniques for discrete time systems					
	REFERENCES :					
1. Gre	wal.B.S, Higher Engineering Mathematics, Khanna Publications, 43rd Edition, 2014.					
2. N.F	 N.P. Bali. and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, LaxmiPublications Pvt. Ltd, 2007. 					
Lax	miPublications Pvt. Ltd, 2007.					

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME311	FLUID MECHANICS AND MACHINERY	2	2	0	3		
COURSE OBJECTIVES							
• To int	• To introduce concepts about properties of fluids and control volume.						
• To de	monstrate the applications of the conservation laws to flow through pipes						
• To dis	cuss on the importance of dimensional analysis						
• To dis	cuss the importance of various types of flow in pumps.						
• To dis	cuss the importance of various types of flow in turbines.						
UNIT 1	PROPERTIES OF FLUID AND ITS SIGNIFICANCE			12			
Properties of equation, energy	fluids, Flow characteristics– concept of control volume - application of corgy equation and momentum equation, Euler equation.	ontir	nuity	7			
UNIT 2	FLOW THROUGH CIRCULAR CONDUITS			12			
Hydraulic and layer concepts diagram- com laminar and to	Hydraulic and energy gradient - Laminar flow through circular conduits and circular annuli, boundary layer concepts – types of boundary layer thickness – Darcy-Weisbach equation –friction factor- Moody diagram- commercial pipes- minor losses – flow through pipes in series and parallel, different geometry, laminar and turbulent flow, hydraulic diameter.						
UNIT 3	INTRODUCTION TO DIMENSIONAL ANALYSIS	12					
Dimensional Dimensionles	analysis – methods of dimensional analysis – Similitude –types s parameters- application of dimensionless parameters – Model analysis.	of s	simil	litud	e -		
UNIT 4	PUMPS	PUMPS 12					
Impact of jets triangles - dir impeller - per	s - Euler's equation - theory of roto-dynamic machines – various efficient nensional analysis of a pump, centrifugal pumps– working principle - w formance curves – Reciprocating and rotary pumps - working principles.	encie ork	es– v done	veloo e by	city the		
UNIT 5	TURBINES			12			
Classification of turbines – heads and efficiencies – velocity triangles. Axial, radial and mixed flow turbines, pelton wheel, Francis turbine and Kaplan turbines- working principles - work done by water on the runner – draft tube. Specific speed - performance curves for turbines – governing of turbines, introduction to micro-hydro turbines.							
	TOTAL	.: 60	PE	RIO	DS		
	COURSE OUTCOMES:						
On successful	On successful completion of the course, students will be able to						

CO1	CO1 Apply mathematical knowledge to predict the properties and characteristics of a fluid				
CO2 Analyze and calculate major and minor losses associated with incompressible fluid flow in piping networks					
CO3 Calculate mathematically and predict the nature of physical quantities					
CO4 Analyze the performance of hydraulic pumps					
CO5	Analyze the performance of hydraulic turbines				
	REFERENCES				
1. Mo	di, P.N. and Seth, S.M. "Hydraulics and Fluid Mechanics", standard book house, New Delhi,				
201	2013.				
2. Ban	sal, R.K, "A text book of fluid mechanics and Hydraulic machines", Laxmi publications (P)				
Ltd.	, 2010.				
2 17					

Kumar, K. L., "Engineering fluid mechanics", Eurasia publishing house(p) Ltd., New Delhi, 2016.
 Streeter, V. L. and Wylie E. B., "Fluid mechanics", McGraw hill publishing Co., 2010.

COURSE CODE	COURSE NAME	L	Т	Р	С			
191EE311	ELECTRICAL DRIVES AND CONTROLS	3	0	0	3			
	COURSE OBJECTIVES							
• To understand the basics of drive control and braking concepts of different types of electrical machines and their performance.								
• To stu	dy the different methods of starting D.C motors and induction motors.							
• To stu	dy the conventional and solid-state drives speed control methods.							
UNIT 1	INTRODUCTION			9				
Basic Elements – Types of Electric Drives -Application of Electrical Drive– factors influencing the choice of electrical drives– Loading conditions and classes of duty – Selection of power rating for drive motors with regard to thermal overloading and Load variation factors– heating and cooling curves.								
UNIT 2	DRIVE MOTOR CHARACTERISTICS AND BRAKING			9				
Electrical and Mechanical characteristics of various types of load and drive motors – Braking of DC motors: Shunt, series and compound – Braking of AC motors: Single phase and Three phase induction motors.					ion			
UNIT 3	MOTOR STARTING METHODS			9				
Types of D.C Motor starters	Motor starters – Typical control circuits for shunt and series motors – Ty s – Three phase squirrel cage and slip ring induction motors.	pes	of A	.C				
UNIT 4	CONVENTIONAL SPEED CONTROL OF DRIVE MOTORS			9				
Speed control system– Spee slip power rec	Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard control system– Speed control of three phase induction motor – Voltage control, voltage / frequency control, slip power recovery scheme.							
UNIT 5	SOLID STATE SPEED CONTROL OF DRIVE MOTORS		9					
Speed control of DC series and shunt motors –Using controlled rectifiers and DC choppers – applications. Speed control of three phase induction motor – slip power recovery scheme – Using inverters and AC voltage regulators – applications.								
	ΤΟΤΑΙ	.: 45	PE	RIO	DS			
COURSE OUTCOMES:								

On suce	On successful completion of the course, students will be able to				
CO1	Analyze the rating and class of duty of machines for particular application of electrical drive and draw the heating and cooling curves.				
CO2	Explain the mechanical & electrical characteristics of DC & AC machines for application on electrical drive.				
CO3	Describe the starting methods of both DC and AC machines.				
CO4	Classify conventional control and solid state speed control for DC drives.				
CO5	Apply speed control on DC and AC drive by conventional and solid state methods.				
DEFEDENCES					

REFERENCES

1. Vedam Subrahmaniam, "Electric Drives (concepts and applications)", Tata McGraw-Hill, 2001

2. Nagrath .I.J. & Kothari .D.P, "Electrical Machines", Tata McGraw-Hill, 1998

3. Dubey.G.K."Fundamentals of Electrical Drives", Alpha science International ltd. Second edition.

4. Pillai.S.K "A first course on Electric drives", Wiley Eastern Limited, 1998

5. Singh. M.D., K.B.Khanchandani, "Power Electronics", Tata McGraw-Hill, 1998

6. Partab. H., "Art and Science and Utilisation of Electrical Energy", Dhanpat Rai and Sons, 1994

COURSE	COUDSE NAME	т	т	Ъ				
CODE	COURSE NAME	L	1	P	C			
191ME321	ENGINEERING THERMODYNAMICS	2	2	0	3			
(Use o	(Use of Standard and approved Steam Table, Mollier Chart, Compressibility Chart and Psychrometric Chart permitted)							
	COURSE OBJECTIVES							
• To dis physic therm	• To discuss about thermodynamic systems and properties, relationships among the thermos- physical properties, the laws of thermodynamics and applications of these basic laws in thermodynamic systems.							
• To fai perfor	miliarize the students to understand the fundamentals of thermodynamic s rm thermal analysis on their behavior and performance.	syste	ems	and	to			
UNIT 1	BASIC CONCEPTS AND FIRST LAW				9			
types, therm processes, he other modes between temp steady and ur	at and work transfer, definition and comparison, sign convention, displac of work .P-V diagram, zeroth law of thermodynamics, thermal equilibrity perature scales, first law of thermodynamics –application to closed and isteady flow processes.	and eme im– ope	irre ent v rela n sy	vork tion sten	and ship ns –			
UNIT 2	SECOND LAW AND AVAILABILITY ANALYSIS				9			
Heat reservoir corollaries. C T-s diagram, in entropy. ap of a source an	Heat reservoir, source and sink, heat engine, refrigerator, heat pump, statements of second law and its corollaries. Carnot cycle, reversed Carnot cycle, performance. concept of entropy, Clausius inequality, T-s diagram, entropy change for - pure substance, ideal gases - different processes, principle of increase in entropy. applications of second law, high and low grade energy, available and non-available energy of a source and finite body, energy and irreversibility, energy analysis of simple system.							
UNIT 3	PROPERTIES OF PURE SUBSTANCE				9			
Formation of use of steam	steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams table and Mollier chart, Determination of dryness fraction using calorime	s, p- ter.	v-T	surf	ace,			
UNIT 4	IDEAL AND REAL GASES, THERMODYNAMIC RELATIO	NS			12			
Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases- Reduced properties. Compressibility factorPrinciple of Corresponding states -generalized compressibility chart and its use Maxwell relations, Tds Equations, difference and ratio of heat capacities, energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation.								

UNIT	GAS MIXTURES AND PSYCHROMETRY12					
Mole and Mass fraction, Dalton's and Amagat'sLaw, Properties of gas mixture, Psychrometric properties, Psychrometric charts, Property of air vapour mixtures by using chart and expressions Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification dehumidification, evaporative cooling and adiabatic mixing, Applications.						
	TOTAL: 45 PERIODS					
COURS	SE OUTCOMES:					
On succ	essful completion of the course, students will be able to					
CO1	Apply the first law of thermodynamics for simple open and closed systems under steady					
CO2	2 Apply second law of thermodynamics to open and closed systems and calculate entropy					
CO3	Apply Rankine cycle to steam power plant and compare few cycle improvement methods					
CO4	Derive simple thermodynamic relations of ideal and real gases					
CO5	Calculate the properties of gas mixtures and moist air and its use in psychometrics					
	REFERENCES					
1. Nag	, P.K., "Engineering Thermodynamics", 5th Edition, Tata McGraw-Hill, New Delhi, 2013					
2. Yun	2. Yunus A.Cengel & Michael A. Boles, "Thermodynamics", 8th edition 2015.					
3. Cha	Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2016.					
4 D '						

4. Rajput, R.K, "A Text Book of Engineering Thermodynamics ", Fifth Edition, 2017.

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME322	MANUFACTURING TECHNOLOGY II	3	0	0	3		
	COURSE OBJECTIVES						
• To learn the metal cutting theory and calculate the forces involved in it.							
• To stu	dy construction, working and operations of centre, semi-automatic and a	uton	natic	lath	es.		
• To pro	ovide the knowledge on construction, working of milling and gear cutting	; ma	chin	es.			
• To im boring	part knowledge on construction, working and operations of reciprocatig machines.	ng,	drill	ing a	and		
• To proproces	ovide knowledge on construction, working of broaching, grinding and fesses.	w fi	ne f	inish	ing		
UNIT 1	THEORY OF METAL CUTTING			9	9		
types of chip calculations. tool life -mec and its proper	formation- Mechanisms of metal cutting- Merchants Circle - Deriving the Cutting tool - Reasons for failure of cutting tools and form of wear- varia hanisms of wear- single point tool and multipoint nomenclature, Cutting ties.	e for bles fluic	ces, affe ls - 7	cting Fype	S		
UNIT 2	CENTER LATHE AND WORK HOLDING DEVICES			9	9		
Introduction Capstan and t Calculation o Fixtures and i	 Types - Centre Lathe - Construction, specification, operations. spec urret lathes – automats – single spindle, Swiss type, automatic screw typ f machining time - Capstan and turret lathes Work holding devices - Con ts applications. 	ial a e, m icept	uttac ulti t of .	hme spine Jigs	nts, 1le. and		
UNIT 3	ABRASIVE PROCESSES AND GEAR CUTTING				9		
Abrasive proc surface grind polishing and	Abrasive processes: Introduction-Grinding wheel: types of grinding machines – cylindrical grinding, ourface grinding, centre less grinding –Grinding Process parameters- honing, lapping, super finishing, polishing and buffing, - Gear cutting, forming, generation, shaping, hobbing						
UNIT 4	DRILLING AND BORING MACHINES			1	.2		
Drilling – Intr machine: hack surface and co	Drilling – Introduction, Reaming, Boring, and Tapping –Other Hole-Making Operations- Sawing machine: hack saw, band saw, circular saw-Broaching machines: broach construction – push, pull, surface and continuous broaching machines.						
UNIT 5	NON - TRADITIONAL MACHINING			1	2		
Need for Non Traditional Machining, Electric-Discharge Machining (EDM) -Electrochemical Machining-Ultrasonic Machining-chemical Machining-Laser Beam machining, Abrasive Water Jet machining (AWIM), electron Beam Machining (EBM), Ion Beam Machining (IBM), Plasma Arc							

Machining (PAM)-Equipments- Process- Process Parameters and Machining Characteristics, Applications, Limitations

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On successful completion of the course, students will be able to

REFERENCES		
CO5	Apply the fundamental concepts of non-traditional machining.	
CO4	Elaborate on various surface finishing operations.	
CO3	Explain the working principles of machine tools.	
CO2	Analyse various operation in turning.	
CO1	Apply the concepts on theory of metal cutting.	

- 1. S. K. Hajra Choudhury, Elements of Workshop Technology. Vol. II, Media Promoters & Publishers Private Limited., Mumbai, 2013.
- 2. P N Rao, —Manufacturing Technology Metal Cutting & Machine Tools, Third Edition, Tata McGraw-Hill Publishing Company Limited, 2013.
- 3. SeropeKalpakjian and Steven R Schmid, Manufacturing Engineering and Technology, Pearson Education Limited. New Delhi, 2013.
- 4. P.C Sharma, Manufacturing Technology II, S.Chand& Company Limited. New Delhi, 2012.
- 5. Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd., New Delhi, 2007.

COURSE CODE	COURSE NAME	L	Т	P	С		
191ME323	ENGINEERING METALLURGY	3	0	0	3		
	COURSE OBJECTIVES						
• To im and no applic	• To impart knowledge on the structure, properties, treatment, testing and applications of metals and non-metallic materials so as to identify and select suitable materials for various engineering applications.						
UNIT 1	ALLOYS AND PHASE DIAGRAMS				9		
Constitution eutectic, eut Classification	of alloys – Solid solutions, substitutional and interstitial – phase diagram ectoid, peritectic, and peritectoid reactions, Iron – carbon equilib of steel and cast Iron microstructure, properties and application.	s, Iso oriur	om n d	orpho diagra	ous, am.		
UNIT 2	HEAT TREATMENT				9		
Definition – I and Temperin diagram CCR carburizing, hardening.	Definition – Full annealing, stress relief, recrystallisation and spheroidising – normalising, hardening and Tempering of steel. Isothermal transformation diagrams – cooling curves superimposed on I.T. diagram CCR – Hardenability, Jominy end quench test - Austempering, martempering – case hardening, carburizing, Nitriding, carbonitriding – Flame and Induction hardening – Vacuum and Plasma hardening.						
UNIT 3	FERROUS AND NON-FERROUS METALS			9	9		
Effect of allo steels – Cast Brass, Bronz Bearing alloy	ying additions on steel- α and β stabilisers– stainless and tool steels – H Iron - Grey, white, malleable, spheroidal – alloy cast irons, Copper and e and Cupronickel – Aluminium and Al-Cu – precipitation strengthen s, Mg-alloys, Ni-based super alloys and Titanium alloys.	SLA copj ing	s, N per trea	1arag alloy atmer	;ing /s – 1t –		
UNIT 4	NON-METALLIC MATERIALS			9	9		
Polymers – ty various therm PPO, PPS, P Properties an Metal Matrix	Polymers – types of polymer, commodity and engineering polymers – Properties and applications of various thermosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE, Polymers – Urea and Phenol formaldehydes)- Engineering Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON –Composites-Classifications-Metal Matrix and FRP - Applications of Composites.						
UNIT 5	UNIT 5MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS9						
Mechanisms of plastic deformation, slip and twinning – Types of fracture – Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), hardness tests, Impact test lzod and charpy, fatigue and creep failure mechanisms.							

Total: 45 PERIODS

	COURSE OUTCOMES:					
On suc	cessful completion of the course, students will be able to					
CO1	O1 Explain the basics of phase diagram and apply the knowledge of FeC diagram to understand the relationship between microstructure, properties and application of steel and cast iron					
CO2	CO2 Apply the various heat treatment processes					
CO3	Explain the effect of alloying elements on ferrous alloys and non ferrous alloys					
CO4 Elaborate the properties and application of polymers, ceramics and composites						
CO5	CO5 Explain the mechanisms of deformation and fracture and also compare various methods to determine the mechanical properties					
	REFERENCES					
1. Av	1. Avner, S.H., "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1997.					
2. Wi Ed	 Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, Revised Indian Edition 2014 					
3. Ke Pri	 Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 2010. 					
4. Ra	ghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt. Ltd., 2015.					
5. U. Ed	C.Jindal: Material Science and Metallurgy, "Engineering Materials and Metallurgy", First ition, Dorling Kindersley, 2012.					

6. Upadhyay. G.S. and Anish Upadhyay, "Materials Science and Engineering", Viva Books Pvt. Ltd., New Delhi, 2006.

COUR COD	RSE DE	COURSE NAME	L	Т	Р	С
191EE3	31A	ELECTRICAL ENGINEERING LABORATORY	0	0	4	2
		COURSE OBJECTIVES				
• '	To va	lidate the principles studied in theory by performing experiments in the	e lab	orat	ory	
• '	To stu	dy the efficiency, voltage regulation of Electrical Machine				
		LIST OF EXPERIMENTS				
1.	Load (test on DC Shunt motor				
2.	Load (test on DC Series motor				
3.	O.C.C	& Load characteristics of DC Shunt generator				
4.	Speed	control of DC shunt motor (Armature, Field control)				
5.	Load t	test on single phase transformer				
6.	O.C &	S.C Test on a single phase transformer				
7.	Regul	ation of an alternator by EMF & MMF methods.				
8.	V curv	ves and inverted V curves of synchronous Motor				
9.	Load t	test on three phase squirrel cage Induction motor				
10.	Speed	control of three phase slip ring Induction Motor				
11.	Study	of DC Starters				
12.	Study	of AC Starters				
		TOTAL	: 60	PEI	RIO	DS
		COURSE OUTCOMES:				
On succ	cessful	completion of the course, students will be able to				
CO1	Obse load	erve the performance of various DC machines and Transformer by conductest and OC, SC test respectively	ting	no l	oad	,
CO2	Estin	nate the losses occurring on machines				
CO3	Elab	orate about starters based on the machine and power rating				

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	DC Shunt motor	2 No.
2	DC Series motor	1 No.
3	DC Shunt motor - DC Shunt generator ser	1 No.
4	DC Series motor - DC Series generator ser	1 No.
5	Single phase transformer	2 No.
6	Three Phase alternator	2 No.
7	Three Phase synchronous motor	1 No.
8	Three phase squirrel cage induction motor	1 No.
9	Three phase slip ring induction Motor	1 No.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

COU CO	RSE DE	COURSE NAME	L	Т	Р	С
191MI	E 31B	FLUID MECHANICS AND MACHINERY LABORATORY	0	0	4	2
		COURSE OBJECTIVES				
• '	To verif	y the principles studied in fluid mechanics theory by performing exper	rimer	nts		
		LIST OF EXPERIMENTS				
1. Dete 2. Det 3. Calc 4. Dete 5. Con 6. Con 7. Con 7. Con 8.Con	 Determination of the Coefficient of discharge of given Orifice meter Determination of the Coefficient of discharge of given Venturi meter. Calculation of the rate of flow using Rota meter. Determination of friction factor for a given set of pipes. Conducting experiments and drawing the characteristic curves of centrifugal pump/ submergible pum Conducting experiments and drawing the characteristic curves of feciprocating pump. Conducting experiments and drawing the characteristic curves of Gear pump. Conducting experiments and drawing the characteristic curves of Felton wheel. Conducting experiments and drawing the characteristic curves of Francis turbine Conducting experiments and drawing the characteristic curves of Kaplan turbine. 					
		Tot	al: 6	0 PI	ERIC	DDS
		COURSE OUTCOMES:				
On suc	On successful completion of the course, students will be able to					
CO1	Use the	e measurement equipments for flow measurement				
CO2	Perform	n test on different pumps and turbines				

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Orifice meter setup	1 No.
2	Venturimeter setup	1 No.
3	Rotameter setup	1 No.
4	Pipe Flow analysis setup	1 No.
5	Centrifugal pump/submergible pump setup	1 No.
6	Reciprocating pump setup	1 No.
7	Gear pump setup	1 No.
8	Pelton wheel setup	1 No.
9	Francis turbine setup	1 No.
10	Kaplan turbine setup	1 No.

COUR	RSE DE	COURSE NAME	L	Т	Р	С
191ME	C32A	MANUFACTURING TECHNOLOGY LABORATORY	0	0	4	2
		COURSE OBJECTIVES				
•	To Stu machin core ir	ady and practice the various operations that can be performed in lathe, nes and in special purpose machines to equip with the practical knowledge adustries	sha e rec	per, luire	mill d in	ing the
•	To der	nonstrate the sand moulding techniques and metal joining using arc weld	ling.			
		LIST OF EXPERIMENTS				
Machin 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	LIST OF EXPERIMENTS Machining and Machining time estimations for: 1. Taper Turning 2. External &Internal Thread Cutting 3. Eccentric Turning 4. Knurling 5. Square/Hexagonal Head Shaping 6. Measurement of cutting forces in Milling / Turning Process 7. Joining of plates and pipes using Arc Welding 8. Preparation of green sand moulds 9. Contour milling using vertical milling machine 10. Spur gear cutting in milling machine 11. Gear generation in hobbing machine 12. Plain Surface grinding 13. Cylindrical grinding 14. Tool angle grinding with tool and Cutter Grinder					
		Total	l: 60	PE	RIO	DS
COURSE OUTCOMES:						
On succ	cessful	completion of the course, students will be able to				
CO1	Use o	lifferent machine tools to manufacturing gears				
CO2	CO2 Use different machine tools for finishing operations and manufacture tools using cutter grinder					

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Centre Lathes	7 Nos.
2	Shaper	1 No.
3	lathe Tool Dynamometer	1 No.
4	Milling Tool Dynamometer	1 No.
5	Arc welding transformer with cables and holders	1 No.
6	Moulding table, Moulding equipments	2 Nos.
7	Horizontal Milling Machine	1 No.
8	Vertical Milling Machine	1 No.
9	Gear Hibbing Machine	1 No.
10	Surface Grinding Machine	1 No.
11	Cylindrical Grinding Machine	1 No.
12	Tool and cutter grinder.	1 No.

COURSE CODE	COURSE NAME	L	Т	Р	С
191MA402	STATISTICS AND NUMERICAL METHODS	2	2	0	3
	COURSE OBJECTIVES				
• The ab knowle on qua	• The ability to identify, reflect upon, evaluate and apply different types of information and knowledge to form independent judgments. analytical, logical thinking and conclusions based on quantitative information will be the main objective of learning this subject.				
UNIT 1	TESTING OF HYPOTHESIS			12	
Sampling distr F- test- Chi-sq	ributions- Large sample test: Tests for mean- Small sample tests: Tests fo uare test for Goodness of fit and Independence of attributes	r me	ean ((t te	st),
UNIT 2	DESIGN OF EXPERIMENTS			12	
Analysis of V Randomized b	Variance - One way and two way classifications - Completely random lock design – Latin square design	nized	d de	sign	ı –
UNIT 3	NUMERICAL SOLUTION TO EQUATIONS			12	
Solution of alg linear equation of a matrix by	gebraic and transcendental equations: Newton- Raphson method - Solutions: Gauss elimination method - Inverse of a matrix: Gauss-Jordan method Power method.	on of l- Ei	f sys gen	tem valı	ues
UNIT 4	INTERPOLATION, DIFFERENTIATIONAND INTEGRATION			12	
Interpolation: Newton's forv Simpson's rule	Interpolation: Newton's forward and backward interpolation formulae - Numerical differentiation: Newton's forward and backward interpolation formulae. Numerical integration: Trapezoidal rule- Simpson's rules for single integrals- Two point Gaussian quadrature formula.				
UNIT 5	NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS			12	
Solution of first order ordinary differential equations: Fourth order Runge- Kutta method - Solution of partial differential equations: Elliptic equations: Poisson's equation- Parabolic equations by Crank Nicholson method- Hyperbolic equations by explicit finite difference method.					
	Total: 45 Periods				
	COURSE OUTCOMES:				
Upon the com	Upon the completion of this course the students will be able to				
CO1 Apply the concept of testing of hypothesis for small and large samples in real life problems				S	

CO2	Analyze the basic concepts of Design of Experiments
CO3	Solve algebraic and transcendental equations and Eigen-value problems
CO4	Apply the numerical techniques of differentiation and integration for engineering problem
CO5	Apply various techniques and methods for solving first and second order ordinary differential equations

REFERENCES

- 1. Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science ", 10th Edition, Khanna Publishers, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- 3. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 4. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 5. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.
- 6. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics ", Tata McGraw Hill Edition, 2004.

Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 8th Edition, Pearson Education, Asia, 2007.

COURSE CODE	COURSE NAME	L	Т	Р	С
191ME411	STRENGTH OF MATERIALS FOR MECHANICAL ENGINEERS	3	0	0	3
	COURSE OBJECTIVES				
• To un	derstand the concepts of stress, strain, principal stresses and principal pla	nes.			
• To stu beams	dy the concept of shearing force and bending moment due to external load and their effect on stresses.	s in	dete	rmin	ate
• To det	termine stresses and deformation in circular shafts and helical spring due	to to	orsio	n.	
• To con	mpute slopes and deflections in determinate beams by various methods.				
• To stu	dy the stresses and deformations induced in thin and thick shells.				
UNIT 1	STRESS, STRAIN AND DEFORMATION OF SOLIDS			9	
Rigid bodies simple and co inclined plane	Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound bars – Thermal stresses – Elastic constants – Volumetric strains –Stresses on inclined planes – principal stresses and principal planes – Mohr's circle of stress.				
UNIT 2	TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEA	Μ		9	
Beams – type – Simply sup distribution – distribution.	s transverse loading on beams – Shear force and bending moment in bear oported beams and over – hanging beams. Theory of simple bending– - Load carrying capacity – Proportioning of sections – Flitched beams	ns – - ber 3 – S	Can idin Shea	tilev g str r str	rers ress ress
UNIT 3	TORSION			9	
Torsion form Deflection in carriage sprin	sulation stresses and deformation in circular and hollows shafts $-S$ shafts fixed at the both ends $-S$ tresses in helical springs $-$ Deflection of gs.	Stepj heli	ped ical :	shaf sprir	its– igs,
UNIT 4	DEFLECTION OF BEAMS			9	
Double Integrand deflection	Double Integration method – Macaulay's method – Area moment method for computation of slopes and deflections in beams - Conjugate beam and strain energy.				
UNIT 5	THIN CYLINDERS, SPHERES AND THICK CYLINDERS			9	
Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin and thick cylinders – spherical shells subjected to internal pressure –Deformation in spherical shells – Lame's theorem.					
	То	otal:	45]	Peri	ods

	COURSE OUTCOMES:				
Upo	the completion of this course the students will be able to				
CO	Apply the concepts of stress, strain, principal stresses and principal planes				
CO2	Explain the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses				
CO3	CO3 Determine stresses and deformation in circular shafts and helical spring due to torsion				
CO4	CO4 Compute slopes and deflections in determinate beams by various methods				
CO	CO5 Analyze the stresses and deformations induced in thin and thick shells				
	REFERENCES				
1. l	ansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2016				
2. J	indal U.C., "Strength of Materials", Asian Books Pvt. Ltd., New Delhi, 2009				
3. I I	 Ferdinand P. Beer, Russell Johnson, J.r. and John J. Dewole "Mechanics of Materials", Tata McGraw Hill Publishing 'co. Ltd., New Delhi, 2005. 				
4. I	Hibbeler, R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2013				
5. S	ubramanian R., "Strength of Materials", Oxford University Press, Oxford Higher Education eries, 2010.				

COURSE CODE	COURSE NAME	L	Т	Р	С	
191ME421	KINEMATICS OF MACHINERY	2	2	0	3	
	COURSE OBJECTIVES					
• To un	derstand the basic components and layout of linkages in the assembly of	f a sy	stem	mach	iine.	
• To un veloc	nderstand the principles in analyzing the assembly with respect to ity, and acceleration at any point in a link of a mechanism.	the	displ	acem	ent,	
• To un mech	nderstand the motion resulting from a specified set of linkages, d anisms and cam mechanisms for specified output motions.	lesigi	n few	link	tage	
• To un of frid	derstand the basic concepts of toothed gearing and kinematics of gear traction in motion transmission and in machine components.	ains	and th	ne eff	ects	
UNIT 1	BASICS OF MECHANISMS			12		
Classification Mobility – K bar chain and Description Universal Joi	Classification of mechanisms – Basic kinematic concepts and definitions –Degree of freedom, Mobility – Kutzbach criterion, Gruebler's criterion – Grashof's Law – Kinematic inversions of four- bar chain and slider crank chains – Limit positions – Mechanical advantage – Transmission Angle – Description of some common mechanisms – Quick return mechanisms, Straight line generators, Universal Joint – rocker mechanisms.					
UNIT 2	KINEMATICS OF LINKAGE MECHANISMS			12		
Displacemen and accelera simple mecha	t, velocity and acceleration analysis of simple mechanisms – Graphica tion polygons – Velocity analysis using instantaneous centres – kin anisms – Coincident points – Coriolis component of Acceleration.	l met iemat	hod– tic an	Velo alysi	city s of	
UNIT 3	KINEMATICS OF CAM MECHANISMS			12		
Classification velocity, para of plate cam undercutting	Classification of cams and followers – Terminology and definitions – Displacement diagrams –Uniform velocity, parabolic, simple harmonic and cycloidal motions – Derivatives of follower motions – Layout of plate cam profiles – Specified contour cams – Circular arc and tangent cams – Pressure angle and undercutting – sizing of cams.				orm yout and	
UNIT 4	GEARS AND GEAR TRAINS			12		
Law of tooth –Gear tooth Pinion gears Gear Trains.	Law of toothed gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology and definitions –Gear tooth action – contact ratio – Interference and undercutting. Helical, Bevel, Worm, Rack and Pinion gears [Basics only]. Gear trains – Speed ratio, train value – Parallel axis gear trains – Epicyclic Gear Trains.		ions and /clic			
UNIT 5	FRICTION IN MACHINE ELEMENTS		12			

Surface contacts – Sliding and Rolling friction – Friction drives – Friction in screw threads –Bearings and lubrication – Friction clutches – Belt and rope drives – Friction in brakes- Band and Block brakes.

Total: 60 Periods

COURSE OUTCOMES:

Upon the completion of this course the students will be able to

CO1	Discuss the basics of mechanisms
CO2	Calculate velocity and acceleration in simple mechanisms
CO3	Develop CAM profiles
CO4	Solve problems on gears and gear trains
CO5	Examine friction in machine elements
	REFERENCES
1. F.B	. Sayyad, "Kinematics of Machinery", MacMillan Publishers Pvt Ltd., Tech-max Educational

- 1. F.B. Sayyad, "Kinematics of Machinery", MacMillan Publishers Pvt Ltd., Tech-max Educational resources, 2011.
- 2. Rattan, S.S, "Theory of Machines", 4th Edition, Tata McGraw-Hill, 2014.
- 3. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4th Edition, Oxford University Press, 2014.
- 4. Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2005.

COURSE CODE	COURSE NAME	L	Т	Р	С
191ME422	COMPUTER AIDED DESIGN AND MANUFACTURING	3	0	0	3
	COURSE OBJECTIVES				
To pro	ovide an overview of how computers are being used in mechanical compo	onen	t des	sign	
• To un Proper	derstand the application of computers in various aspects of Manufacturi r planning, Manufacturing cost, Layout & Material Handling system	ng v	viz.,	Desi	gn,
UNIT 1	INTRODUCTION	9			
Product cycle system archi homogeneous CAD and CA CAD/CAM c	Product cycle- Design process- sequential and concurrent engineering- Computer aided design – CAD system architecture- Computer graphics – co-ordinate systems- 2D and 3D transformations homogeneous coordinates - Line drawing -Clipping- viewing transformation- Brief introduction to CAD and CAM – Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM – CAD/CAM concepts –Types of production - Manufacturing models and Metrics.				
UNIT 2	GEOMETRIC MODELING			9	
Wireframe, su solids, sweep solids. Bound Modeling (AS	Wireframe, surface, NURBS and solid modeling -applications and advantages. Creating primitive solids, sweeping solids, boolean operations. Extracting entities from a solid. Filleting of edges of solids. Boundary representation (B-rep) Constructive Solid Geometry (CSG) and Analytical Solid Modeling (ASM).				
UNIT 3	CAD STANDARDS		9		
Graphics Star Library (Open	ndards - Graphical Kernel System (GKS) - standards for exchange images nGL) - Data exchange standards - IGES, STEP, CALS etc communicat	s Op ion s	en C stand	Braph dards	nics 3.
UNIT 4	FUNDAMENTAL OF CNC AND PART PROGRAMING			9	
Introduction to NC systems and CNC - Machine axis and Co-ordinate system- CNC machine tools- Principle of operation CNC- Construction features including structure- Drives and CNC controllers- 2D and 3D machining on CNC- Introduction of Part Programming, types - Detailed Manual part programming on Lathe & Milling machines using G codes and M codes- Cutting Cycles, Loops, Sub program and Macros.					
UNIT 5	CELLULAR MANUFACTURING AND FLEXIBLE MANUFACTURING SYSTEM (FMS)			9	
Group Technology (GT), Part Families–Parts Classification and coding– Production flow Analysis– Cellular Manufacturing– Types of Flexibility - FMS – FMS Components – FMS Application & Benefits – FMS Planning and Control– Quantitative analysis in FMS, digital manufacturing, introduction to lean manufacturing.			sis– fits ean		
	ΤΟΤΑΙ	.: 45	PE	RIO	DS

	COURSE OUTCOMES:			
	Upon the completion of this course the students will be able to,			
CO1	Describe the product life cycle and understand the fundamentals of CAD/CAM.			
CO2	Explain the representation of synthetic curves, surface modeling and solid modeling			
CO3 Explain the various CAD standards and data exchange formats				
CO4	Apply CNC principles for manufacturing of components			
CO5	Apply CNC principles for manufacturing of components			
	REFERENCES			
1. I	brahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007.			
2. R	adhakrishnan P, Subramanyan S. and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age			
I	nternational (P) Ltd, New Delhi,2000.			
3. N	Aikell. P. Groover "Automation, Production Systems and Computer Integrated Manufacturing",			
Р	Prentice Hall of India, 2008.			
4. L	atit Narayan, Mallikarjuna Rao, Sarcar, "Computer Aided Design and Manufacturing, Prentice			
H	Hall of India, New Delhi, 2008.			
5. C	5. Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufacturing			
11 6 F	Hanagement Second Edition, Pearson Education, 1999. Folay Wan Dam Fainer and Hughes "Computer graphics principles & practice" Pearson			
0. I F	Education - 2003			
L				

COURSE CODE	COURSE NAME	L	Т	Р	С
191ME423	THERMAL ENGINEERING	3	0	0	3
(Use of star	dard refrigerant property data book, Steam Tables, Mollier diagram and chart permitted)	Psyc	hroi	metri	ic
	COURSE OBJECTIVES				
• To int analys	• To integrate the concepts, laws and methodologies from the first course in thermodynamics into analysis of cyclic processes				nto
• To ap Turbin	ply the thermodynamic concepts into various thermal application like IC nes, Compressors and Refrigeration and Air conditioning systems	eng	ines	s, Ste	am
UNIT 1	GAS AND STEAM POWER CYCLES		9		
Air Standard Rankine, rehe	Cycles - Otto, Diesel, Dual, Brayton – Cycle Analysis, Performance an eat and regenerative cycle and combined cycles-Applications.	d Co	ompa	ariso	n –
UNIT 2	INTERNAL COMBUSTION ENGINES			9	
Classification and theoretica MPFI, CRDi, combustion a heat balance t	Classification - components and their function, valve timing diagram and port timing diagram – actual and theoretical p-V diagram of four stroke and two stroke engines, Simple and complete carburetor. MPFI, CRDi, Diesel pump and injector system, battery and magneto ignition System - principles of combustion and knocking in SI and CI Engines, lubrication and cooling systems, performance test and heat balance test calculations			tor. of and	
UNIT 3	STEAM NOZZLES AND TURBINES			9	
Flow of stea Supersaturate for simple and	Flow of steam through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, Supersaturated flow. impulse turbine and reaction turbine principles, compounding, velocity diagram for simple and multi-stage turbines, speed regulations –governors.				
UNIT 4	AIR COMPRESSOR			9	
Classification without clea reciprocating compressor, i	Classification and working principle of various types of compressors, work of compression with and without clearance, volumetric efficiency, isothermal efficiency and isentropic efficiency of reciprocating compressors, multistage air compressor and inter cooling –work of multistage air compressor, introduction to FRL unit.				
UNIT 5	REFRIGERATION AND AIR CONDITIONING			9	
Refrigerants - global warmin system – amn	Refrigerants - Vapour compression refrigeration cycle- super heat, sub cooling, COP, introduction to global warming potential, ozone depletion potential and effects, working principle of vapour absorption system – ammonia-water, Lithium bromide– water, vapour adsorption system, hybrid cooling system,				ı to ion em,

steam refrigeration system (Description only). Air conditioning system – Psychrometric system processes, types and working principles. - concept of RSHF, GSHF, ESHF- Cooling Load calculations, Energy saving potential.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon the completion of this course the students will be able to,

CO1	Apply thermodynamic concepts to different air standard cycles and steam power cycles to	С
001	solve problems	

- **CO2** Solve problems related to single stage and multistage air compressors
- **CO3** Explain the functioning and features of IC engines, its components and its auxiliaries
- **CO4** Calculate performance parameters of IC Engines
- **CO5** Explain the flow in gas turbines and solve problems

REFERENCES

- 1. Rajput. R. K., "Thermal Engineering" S.Chand Publishers, 2000
- 2. Ganesan.V." Internal Combustion Engines", Third Edition, Tata McGraw-Hill 2007

3. Arora.C.P, "Refrigeration and Air Conditioning," Tata McGraw-Hill Publishers 1994

4. Sarkar, B.K, "Thermal Engineering" Tata McGraw-Hill Publishers, 2007

5. Rudramoorthy, R, "Thermal Engineering ", Tata McGraw-Hill, New Delhi, 2003

COURSE CODE	COURSE NAME	L	Т	Р	С
191HS40B	INTERPERSONAL SKILLS LABORATORY	0	0	2	1

COURSE OBJECTIVES

- To equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills.
- Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities.
- Improve general and academic listening skills
- Make effective presentations.

UNIT 1: Listening as a key skill- its importance- speaking - give personal information - ask for personal information - express ability - enquire about ability - ask for clarification Improving pronunciation - pronunciation basics taking lecture notes - preparing to listen to a lecture - articulate a complete idea as opposed to producing fragmented utterances.

UNIT 2:Listen to a process information- give information, as part of a simple explanation – conversation starters: small talk - stressing syllables and speaking clearly - intonation patterns - compare and contrast information and ideas from multiple sources- converse with reasonable accuracy over a wide range of everyday topics.

UNIT 3:Lexical chunking for accuracy and fluency- factors influence fluency, deliver a five-minute informal talk - greet - respond to greetings - describe health and symptoms - invite and offer - accept – decline - take leave - listen for and follow the gist- listen for detail

UNIT 4:Being an active listener: giving verbal and non-verbal feedback - participating in a group discussion -summarizing academic readings and lectures conversational speech listening to and participating in conversations - persuade.

UNIT 5:Formal and informal talk - listen to follow and respond to explanations, directions and instructions in academic and business contexts - strategies for presentations and interactive communication - group/pair presentations - negotiate disagreement in group work.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

Upon the completion of this course the students will be able to,

On successful completion of the course, students will be able to

CO1	Listen and respond appropriately	
CO2	Participate in group discussions	
CC)3	Make effective presentations
------------	------------	--
CO4		Participate confidently and appropriately in conversations both formal and informal
		REFERENCES
1.	Bro Oxf	oks, Margret. Skills for Success. Listening and Speaking. Level 4 Oxford University Press, ford: 2011.
2.	Ric	nards. Jack. & David Bholke. Speak Now Level 3. Oxford University Press, Oxford: 2010
3.	Bha Pea	tnagar, Nitin and Mamta Bhatnagar. Communicative English for Engineers and Professionals. rson: New Delhi, 2010.
4.	Hu Oxf	ghes, Glyn and Josephine Moate. Practical English Classroom. Oxford University Press: ord, 2014.
5.	Lad	ousse, Gillian Porter. Role Play. Oxford University Press: Oxford, 2014
6.	Ric	hards C. Jack. Person to Person (Starter). Oxford University Press: Oxford, 2006.
7.	Var	go, Mari. Speak Now Level 4. Oxford University Press: Oxford, 2013.

COURSE CODE		COURSE NAME	L	Т	Р	С
191ME	41 A	STRENGTH OF MATERIALS LABARATORY	0	0	4	2
		COURSE OBJECTIVES				
•	To stu	dy the mechanical properties of materials when subjected to different typ	es o	f loa	ding	5
		LIST OF EXPERIMENTS				
1. Tens	sion te	st on a mild steel rod				
2. Dou	ble sh	ear test on Mild steel and Aluminium rods				
3. Tors	ion te	st on mild steel rod				
4. Impa	act tes	t on metal specimen				
5. Hard	lness t	est on metals - Brinnell and Rockwell Hardness Number				
6. Defl	ection	test on beams				
7. Com	pressi	on test on helical springs				
8. Tem	pering	g- Improvement Mechanical properties Comparison (i) Unhardened speci	men			
(ii) (Quencl	hed Specimen and (iii) Quenched and tempered specimen.				
9. Mici	roscop	ic Examination of (i) Hardened samples and (ii) Hardened and tempered	sam	ples	•	
		TOTAL	.: 6 0	PE	RIO	DS
		COURSE OUTCOMES:				
On succ	cessful	completion of the course, students will be able to				
CO1	Acce	ess the mechanical properties of the given specimen				
CO2	Eval	uate the strength of the material under working conditions				

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Universal Tensile Testing machine with double 1 shear attachment – 40 Ton Capacity	1 No.
2	Torsion Testing Machine (60 NM Capacity)	1No.
3	Impact Testing Machine (300 J Capacity)	1 No.
4	Brinell Hardness Testing Machine	1 No.
5	Rockwell Hardness Testing Machine	1 No.
6	Spring Testing Machine for tensile and compressive loads (2500 N)	1 No.
7	Metallurgical Microscopes	3 Nos.
8	Muffle Furnace (800 C)	1 No.

191ME42A C.A.D. / C.A.M. LABARATORY 0 0 4	2		
COUDSE OD IECTIVES			
COURSE OBJECTIVES			
• To make the students understand and interpret drawings of machine components.			
• To gain practical experience in handling 3D modeling software system.			
• To gain practical knowledge of CNC programming			
• To make the students understand the tool path verification and CNC code generation			
LIST OF EXPERIMENTS			
I. 3D GEOMETRIC MODELLING	30		
1. Introduction to 3D modeling software.			
2. Sleeve & cotter joints			
3. Gib & cotter joint.			
4. Bush bearing.			
5. Plummer block.			
6. Safety valve.			
7. Flange Coupling.			
8. Universal Coupling.			
9. Oldham's coupling.			
10. Knuckle joint.			
11. Piston and Connecting rod.			
12. Screw jack.	• •		
II. Manual Part Programming.	30		
(1) Part Programming - CNC Machining Centre			
a) Linear Cutting.			
b) Circular cutting.			
c) Cutter Radius Compensation.			
(ii) Part Programming CNC Turning Centre			
(11) Part Programming - CNC Turning Centre			
b) Thread Cutting			
c) Rough and Finish Turning Cycle.			

d) Drilling and Tapping Cycle.

e) CL Data and Post process generation using CAM packages.

f) Application of CAPP in Machining and Turning Centre.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

On successful completion of the course, students will be able to ,

CO1	Model, assemble and draft the given drawing of machine component using standard software package

CO2 Write CNC code and simulate for manufacturing in the CNC machine specified

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Computer nodes or systems (High end CPU with at least 1GB main memory)	1 No.
2	Licensed CAD software (30 User)	1No.
3	FANUC CNC simulation software (15 user)	1 No.
4	Trainer CNC Milling machine	1 No.
5	Trainer CNC Lathe machine	1 No.
6	Laser Printer	1 No.
7	A3 Plotter	1 No.

COURSE CODE	COURSE NAME	L	Т	Р	С	
191ME521	DESIGN OF MACHINE ELEMENTS	3	0	0	3	
	(Use of standard design data book permitted)					
	COURSE OBJECTIVES					
• To fai	miliarize the various steps involved in the Design Process					
• To un to sati	derstand the principles involved in evaluating the shape and dimension isfy functional and strength requirements.	ns of	a con	npone	ent	
• To lea	arn to use standard practices and standard data					
To lea	arn to use catalogues and standard machine components					
UNIT 1	STEADY STRESSES AND VARIABLE STRESSES IN MAC	CHIN	IE		9	
Introduction mechanical p equations – I eccentric loa Design based	Introduction to the design process - factors influencing machine design, selection of materials based mechanical properties - Preferred numbers, fits and tolerances – Direct, Bending and torsional stree equations – Impact and shock loading – calculation of principle stresses for various load combination eccentric loading – curved beams – crane hook and 'C' frame- Factor of safety - theories of failure Design based on strength and stiffness – stress concentration – Design for variable loading.		1 on ress ons, re –			
UNIT 2	SHAFTS AND COUPLINGS				9	
Design of so splines - Rigi	lid and hollow shafts based on strength, rigidity and critical speed -1 id and flexible couplings.	Keys,	keyv	ways	and	
UNIT 3	TEMPORARY AND PERMANENT JOINTS				9	
Threaded fas joints, riveted	teners - Bolted joints including eccentric loading, Knuckle joints, Cott d joints for structures - theory of bonded joints.	er joi	nts –	Weld	ded	
UNIT 4	ENERGY STORING ELEMENTS AND ENGINE COMPON	IENI	S		9	
Various types stresses in rir	s of springs, optimization of helical springs - rubber springs - Flywhee ns and arms for engines and punching machines- Connecting Rods and	ls con l crar	nsidei ik sha	ring afts.		
UNIT 5	BEARINGS				9	
Sliding conta Raimondi and	act and rolling contact bearings - Hydrodynamic journal bearings, Sed Boyd graphs, Selection of Rolling Contact bearings.	omer	field	Num	ber,	
	ТОТ	AL:	45 PI	ERIC)DS	
	COURSE OUTCOMES.					
	COURSE OUTCOMES:					

CO	Analyze machine elements based on steady and variable stresses.		
CO	Design the shaft and coupling		
CO	Analyse temporary and permanent joint for given application		
CO	Design and analyse Energy Storing Elements and Engine Components		
CO	Design the Bearing element for desired applications		
	REFERENCES		
1.]	Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.		
2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineerin Design", 8th Edition, Tata McGraw-Hill, 2008.			
3.	Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.		
4.]	Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4 th Edition, Wiley 2005		
5.	Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill Book Co.(Schaum's Outline), 2010		
6.]]	Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw-Hill Book Co., 2006.		
7. (Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.		
8. 4	Ansel Ugural, "Mechanical Design – An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.		
9.]]	Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Prentice Hall, 2003.		

COURSE CODE	COURSE NAME	L	Т	Р	С
191ME522	METROLOGY AND MEASUREMENTS	3	0	0	3
	COURSE OBJECTIVES				
• To p dimento me	rovide knowledge on various Metrological equipments available t nsion of the components. To provide knowledge on the correct procedur asure the dimension of the components.	o n re to	ieas be	ure adop	the ted
UNIT 1	BASICS OF METROLOGY			9	
Introduction their effect of of standards.	to Metrology – Need – Elements – Work piece, Instruments – Persons – n Precision and Accuracy – Errors – Errors in Measurements – Types – O	- Env Cont	viro rol	nmeı – Ty	nt – pes
UNIT 2	LINEAR AND ANGULAR MEASUREMENTS			9	
Linear Measu terminology measuring in Angle alignn	aring Instruments – Evolution – Types – Classification – Limit gauges – – procedure – concepts of interchange ability and selective assem struments – Types – Bevel protractor clinometers angle gauges, spirit 1 nent telescope – Autocollimator – Applications.	gau bly evel	ge o – , s sin	desig Angu ne ba	n – lar ar –
LINIT 3					
UNIT 5	ADVANCES IN METROLOGY			9	
Basic concep interferomete – Constructio Machine Visi	ADVANCES IN METROLOGY of of lasers Advantages of lasers – laser Interferometers – types – DC or – Applications – Straightness – Alignment. Basic concept of CMM – onal features – Probes – Accessories – Software – Applications – Ba ion System – Element – Applications.	and Typ sic	AC es o cone	9 C Las of CN cepts	sers /IM s of
Basic conceptinterferometer – Construction Machine Vision UNIT 4	ADVANCES IN METROLOGY ot of lasers Advantages of lasers – laser Interferometers – types – DC er – Applications – Straightness – Alignment. Basic concept of CMM – onal features – Probes – Accessories – Software – Applications – Ba ion System – Element – Applications. FORM MEASUREMENT	and Typ sic	AC es c con	9 C Las of CN cepts 9	sers /IM s of
Basic conceptinterferometer – Construction Machine Vistor UNIT 4 Principles and measurement	ADVANCES IN METROLOGY ot of lasers Advantages of lasers – laser Interferometers – types – DC er – Applications – Straightness – Alignment. Basic concept of CMM – onal features – Probes – Accessories – Software – Applications – Ba ion System – Element – Applications. FORM MEASUREMENT d Methods of straightness – Flatness measurement – Thread measurement t, surface finish measurement, Roundness measurement – Applications.	and Typ sic ent,	AC es o cono gear	9 C Lass of CN cepts 9	sers AM s of
Basic conceptinterferometer – Construction Machine Visse UNIT 4 Principles and measurement UNIT 5	ADVANCES IN METROLOGY ot of lasers Advantages of lasers – laser Interferometers – types – DC er – Applications – Straightness – Alignment. Basic concept of CMM – onal features – Probes – Accessories – Software – Applications – Ba ion System – Element – Applications. FORM MEASUREMENT d Methods of straightness – Flatness measurement – Thread measurement t, surface finish measurement, Roundness measurement – Applications. MEASUREMENT OF POWER, FLOW AND TEMPERATURE	and Typ sic ent, ;	AC es c cond	9 C Las of CN cepts 9	sers AM of
Basic conceptinterferometer – Construction Machine Vision UNIT 4 Principles and measurement UNIT 5 Force, torque Venturimeter electrical resion	ADVANCES IN METROLOGY ot of lasers Advantages of lasers – laser Interferometers – types – DC er – Applications – Straightness – Alignment. Basic concept of CMM – onal features – Probes – Accessories – Software – Applications – Ba- ion System – Element – Applications. FORM MEASUREMENT d Methods of straightness – Flatness measurement – Thread measurement, surface finish measurement, Roundness measurement – Applications. MEASUREMENT OF POWER, FLOW AND TEMPERATURI e, power - mechanical, Pneumatic, Hydraulic and Electrical type. Flow r, Orifice meter, rotameter, pitot tube – Temperature: bimetallic strip, istance thermometer – Reliability and Calibration – Readability and Rel	and Typ sic ent, ; E E v me ther iabi	AC es c cond gear	9 C Las of CN cepts 9 9 reme	ent: les,
Basic conceptinterferometer – Construction Machine Vission UNIT 4 Principles and measurement UNIT 5 Force, torque Venturimeter electrical resid	ADVANCES IN METROLOGY ot of lasers Advantages of lasers – laser Interferometers – types – DC or – Applications – Straightness – Alignment. Basic concept of CMM – onal features – Probes – Accessories – Software – Applications – Ba- ion System – Element – Applications. FORM MEASUREMENT d Methods of straightness – Flatness measurement – Thread measurement, surface finish measurement, Roundness measurement – Applications. MEASUREMENT OF POWER, FLOW AND TEMPERATURI e, power - mechanical, Pneumatic, Hydraulic and Electrical type. Flow c, Orifice meter, rotameter, pitot tube – Temperature: bimetallic strip, istance thermometer – Reliability and Calibration – Readability and Rel TOTAL	and Typ sic ent, g ent, g ther ther iabi : 45	AC es o cond gear easu moo lity. PE	9 C Las of CN cepts 9	ent: les, DS
Basic concep interferomete – Construction Machine Viss UNIT 4 Principles an measurement UNIT 5 Force, torque Venturimeter electrical resi	ADVANCES IN METROLOGY ot of lasers Advantages of lasers – laser Interferometers – types – DC er – Applications – Straightness – Alignment. Basic concept of CMM – onal features – Probes – Accessories – Software – Applications – Basic ion System – Element – Applications. FORM MEASUREMENT d Methods of straightness – Flatness measurement – Thread measurement t, surface finish measurement, Roundness measurement – Applications. MEASUREMENT OF POWER, FLOW AND TEMPERATURI e, power - mechanical, Pneumatic, Hydraulic and Electrical type. Flow c, Orifice meter, rotameter, pitot tube – Temperature: bimetallic strip, istance thermometer – Reliability and Calibration – Readability and Rel COURSE OUTCOMES:	and Typ sic of ent, ; E v me ther iabi : 45	AC es concorrections gean modility. PE	9 C Las of CN cepts 9	ent: les, DS

CO1	Explain the difference between accuracy and precision and also understand the sources of error.			
CO2	Elaborate on the instruments like screw gauge, vernier calliper, slip gage, bevel protractor and design limit gauges.			
CO3	Explain the functioning of laser metrology instruments, co- ordinate Measuring Machine and Machine Vision systems.			
CO4	Explain the methods of measuring straightness, flatness, surface roughness and various features of gears			
CO5 Explain the methods of measuring force, torque, power, flow and temperature				
	REFERENCES			
1. Guj "En	1. Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2005. 2. Jain R.K. "Engineering Metrology", Khanna Publishers, 2009.			
2. Ala	n S. Morris, "The essence of Measurement", Prentice Hall of India 1996.			
3. Bec	kwith, Marangoni, Lienhard, "Mechanical Measurements", Pearson Education, 2014.			

4. Charles Reginald Shotbolt, "Metrology for Engineers", 5 th edition, Cengage Learning EMEA, 1990.

5. Donald Peckman, "Industrial Instrumentation", Wiley Eastern, 2004.

6. Raghavendra, Krishnamurthy "Engineering Metrology & Measurements", Oxford Univ. Press, 2013.

COURSE CODE	COURSE NAME	L	Т	Р	С
191ME523	DYNAMICS OF MACHINES	2	2	0	3
	COURSE OBJECTIVES				
 To un analy To un mech To un To un 	 To understand the force-motion relationship in components subjected to external forces and analysis of standard mechanisms. To understand the undesirable effects of unbalances resulting from prescribed motions in mechanism. To understand the effect of Dynamics of undesirable vibrations. To understand the principles in mechanisms used for speed control and stability control. 				nd
UNIT 1	FORCE ANALYSIS			12	
Dynamic for Analysis in r Crank shaft Dynamics of	Dynamic force analysis – Inertia force and Inertia torque– D Alembert's principle –Dynamic Analysis in reciprocating engines – Gas forces – Inertia effect of connecting rod– Bearing loads – Crank shaft torque – Turning moment diagrams –Fly Wheels – Flywheels of punching presses-Dynamics of Cam- follower mechanism			nic s – ses-	
UNIT 2 BALANCING			12		
Static and dy Balancing of – Balancing	namic balancing – Balancing of rotating masses – Balancing a single cy Multi-cylinder inline, V-engines – Partial balancing in engines – Balan machines-Field balancing of discs and rotors.	ylind cing	ler e of l	ngin inka	e – ges
UNIT 3 FREE VIBRATION			12		
Basic features of vibratory systems – Degrees of freedom – single degree of freedom – vibration– Equations of motion – Natural frequency – Types of Damping – Damped vibrat Torsional vibration of shaft – Critical speeds of shafts – Torsional vibration – Two and three torsional systems.		– F oratic ee ro	ree >n- otor		
UNIT 4	FORCED VIBRATION			12	
Response of caused by un	one degree freedom systems to periodic forcing – Harmonic disturbance balance – Support motion –transmissibility – Vibration isolation vibratio	es – I n me	Distu easu	urbai reme	nce ent.
UNIT 5	MECHANISM FOR CONTROL			12	
Governors – governors – G Gyroscopic f ships and air	Given and spring controlled centrifugal governors – Types – Centrifugal governors – Gravity controlled and spring controlled centrifugal governors – Characteristics – Effect of friction – Controlling force curves. Gyroscopes – Gyroscopic forces and torques – Gyroscopic stabilization – Gyroscopic effects in Automobiles, ships and airplanes.				

	TOTAL: 60 PERIODS			
COURSE OUTCOMES				
On successful completion of the course, students will be able to				
CC)1	Describe and solve dynamic equilibrium in simple mechanisms		
CC)2	Construct graphical representation and find solution for partially balanced systems		
CO3		Find solutions for free vibration systems		
CO4		Find solution for forced vibration systems		
CO5		Solve for critical speed conditions in controlling mechanisms & determine values of controlling forces		
		REFERENCES		
1.	D. H Edu	3. Sayyad, "Dynamics of Machinery", McMillan Publishers India Ltd., Tech-Max cational resources, 2011.		
2.	Rati	an, S.S, "Theory of Machines", 4 th Edition, Tata McGraw-Hill, 2014.		
3.	Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4 th Edition, Oxford University Press, 2014.			
4.	Khu	rmi, R.S.,"Theory of Machines", 14th Edition, S Chand Publications, 2005.		

COU	DOF					
COU	NSE DE	COURSE NAME	L	Т	Р	C
191ME52A		METROLOGY AND MEASUREMENTS LABORATORY	0	0	4	2
		COURSE OBJECTIVES				
• To	famili	ar with different measurement equipments and use of this industry for	r qual	ity in	spect	ion
LIST (OF EX	PERIMENTS				
1. Cal usin	ibrationg gau	on and use of measuring instruments – Vernier caliper, micrometer, Vege blocks	erniei	heig	ht gau	ıge–
2. Cal	ibratio	on and use of measuring instruments - depth micrometer, bore gauge,	teles	copic	gaug	;e
3. Me	asurer	nent of linear dimensions using Comparators				
4. Me	asurer	nent of angles using bevel protractor and sine bar				
5. Me (flo	asurer ating	nent of screw thread parameters – Screw thread Micrometers and carriage micrometer)	Thre	e wir	e me	thod
6. Me	asurer	nent of gear parameters – disc micrometers, gear tooth vernier caliper	•			
7. Me	asurer	nent of features in a prismatic component using Coordinate Measurin	g Ma	chine	(CM	M)
8. Pro con	gramr npone	ning of CNC Coordinate Measuring Machines for repeated measures	emer	nts of	iden	tical
9. Nor mea	n-cont asuren	act (Optical) measurement using Toolmaker's microscope / Profile ment system	proje	ctor a	nd V	ideo
10. Me mil	asurer ling, g	nent of Surface finish in components manufactured using various rinding, etc.,) using stylus based instruments	proc	esses	(turr	ning,
11. Ma tool	chine l guide	tool metrology – Level tests using precision level; Testing of straig way using Autocollimator, spindle tests	htnes	s of a	i mac	hine
12. Me	asurer	nent of force, torque and temperature				
		ТО	TAL:	60 P	ERIC	ODS
COURSE OUTCOMES:						
On suc	cessfu	l completion of the course, students will be able to				
CO1	O1 Measure the gear tooth dimensions, angle using sine bar, straightness and flatness, thread parameters, temperature using thermocouple, force, displacement, torque and vibration					
CO2	Calibrate the vernier, micrometer and slip gauges and setting up the comparator for the inspection					

Sl. No.	Description of Equipment	Quantity (R)
1.	Micrometer	5 No.
2.	Vernier Caliper	5 No.
3.	Vernier Height Gauge	2 No.
4.	Vernier depth Gauge	2 No.
5.	Slip Gauge Set	1 No.
6.	Gear Tooth Vernier	1 No.
7.	Sine Bar	1 No.
8.	Floating Carriage Micrometer	1 No.
9.	Profile Projector / Tool Makers Microscope	1 No.
10.	Parallel / counter flow heat exchanger apparatus	1 No.
11.	Mechanical / Electrical / Pneumatic Comparator	1 No.
12.	Autocollimator	1 No.
13.	Temperature Measuring Setup	1 No.
14.	Force Measuring Setup	1 No.
15.	Torque Measuring Setup	1 No.
16.	Coordinate measuring machine	1 No.
17.	Surface finish measuring equipment	1 No.
18.	Bore gauge	1 No.
19.	Telescope gauge	1 No.

REQUIREMENTS FOR A BATCH OF 30 STUDENTS

COURSE CODE

COURSE NAME

L T P C

191ME52B

KINEMATICS AND DYNAMICS LABORATORY

COURSE OBJECTIVES

- To supplement the principles learnt in kinematics and Dynamics of Machinery.
- To apply how certain measuring devices are used for dynamic testing.

LIST OF EXPERIMENTS

- 1. a) Study of gear parameters.
 - b) Experimental study of velocity ratios of simple, compound, Epicyclic and differential gear trains.
- 2. a)Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms.
 - b) Kinematics of single and double universal joints.
- 3. a) Determination of Mass moment of inertia of Fly wheel and Axle system.

b)Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus.

c) Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.

- 4. Motorized gyroscope Study of gyroscopic effect and couple.
- 5. Governor Determination of range sensitivity and effort for Watts, Porter, Proell, and Governors.
- 6. Cams Cam profile drawing, Motion curves and study of jump phenomenon
- a) Single degree of freedom Spring Mass System Determination of natural Frequency and verification of Laws of springs – Damping coefficient determination. b) Multi degree freedom suspension system Determination of influence coefficient.
- 8. a) Determination of torsional natural frequency of single and Double Rotor systems.- Undamped and Damped Natural frequencies. b) Vibration Absorber Tuned vibration absorber.
- 9. Vibration of Equivalent Spring mass system undamped and damped vibration.
- 10. Whirling of shafts Determination of critical speeds of shafts with concentrated loads.
- 11. a) Balancing of rotating masses. (b) Balancing of reciprocating masses.
- 12. a) Transverse vibration of Free-Free beam with and without concentrated masses.
 - b) Forced Vibration of Cantilever beam Mode shapes and natural frequencies.
 - c) Determination of transmissibility ratio using vibrating table.

TOTAL:	60	PERIODS
--------	----	---------

COURSE OUTCOMES:

On successful completion of the course, students will be able to

CO1	Explain gear parameters, kinematics of mechanisms, gyroscopic effect and working of lab equipments
CO2	Determine mass moment of inertia of mechanical element, governor effort and range sensitivity, natural frequency and damping coefficient, torsional frequency, critical speeds of shafts, balancing mass of rotating and reciprocating masses, and transmissibility ratio

Sl.No.	Description of Equipment	Quantity (R)
1.	Cam follower setup	1 No.
2.	Motorised gyroscope	1 No.
3.	Governor apparatus - Watt, Porter, Proell and Hartnell governors	1 No.
4.	Whirling of shaft apparatus	1 No.
5.	Dynamic balancing machine	1 No.
6.	Two rotor vibration setup	1 No.
7.	Spring mass vibration system	1 No.
8.	Torsional Vibration of single rotor system setup	1 No.
9.	Gear Models	1 No.
10.	Kinematic Models to study various mechanisms	1 No.
11.	Turn table apparatus	1 No.
12.	Transverse vibration setup of cantilever	1 No.

REQUIREMENTS FOR A BATCH OF 30 STUDENTS

COURSE CODE	COURSE NAME	L	. T P		С		
191ME621	DESIGN OF TRANSMISSION SYSTEMS	3	0 0 3		3		
	(Use of standard Design data book permitted)						
	COURSE OBJECTIVES						
• To ga Trans	• To gain knowledge on the principles and procedure for the design of Mechanical power Transmission						
• To ap	ply the standard procedure available for Design of Transmission of M	Iecha	nical	eleme	ents		
• To lea	arn to use standard data and catalogues						
UNIT 1	DESIGN OF FLEXIBLE ELEMENTS			9			
Design of fla pulleys – Des	t belts and pulleys - Selection of V belts and pulleys – Selection of hoisign of Transmission chains and Sprockets.	isting	wire	ropes	and		
UNIT 2	SPUR GEARS AND PARALLEL AXIS HELICAL GEARS			9			
Speed ratios Factor of safe wear conside forces for hel	and number of teeth-Force analysis -Tooth stresses - Dynamic effects ety - Gear materials – Design of straight tooth spur & helical gears barations – Pressure angle in the normal and transverse plane Equivalent lical gears.	s – Fa ased c ent nu	tigue on stro imbei	streng ength of te	gth - and eth-		
UNIT 3	BEVEL, WORM AND CROSS HELICAL GEARS			9			
Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demerits terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helical gears.							
UNIT 4	GEAR BOXES			9			
Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer unit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.							
UNIT 5	CLUTCHES AND BRAKES			9			
Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches, Electromagnetic clutches. Band and Block brakes - external shoe brakes – Internal expanding shoe brake.							

COURSE OUTCOMES:

On successful completion of the course, students will be able to

- **CO1** Apply the concepts of design to belts, chains and rope drives
- **CO2** Apply the concepts of design to spur, helical gears
- **CO3** Apply the concepts of design to worm and bevel gears
- **CO4** Apply the concepts of design to gear boxes

CO5 Apply the concepts of design to brakes and clutches

REFERENCES

- 1. Bhandari V, "Design of Machine Elements", 4 th Edition, Tata McGraw-Hill Book Co, 2016.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engine Design", 8 th Edition, Tata McGraw-Hill, 2008.
- 3. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8 th Edition, Prentice Hall, 2003.
- 4. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.
- 5. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.
- 6. Robert C. Juvinall and Marshek, K.M., "Fundamentals of Machine Design", 4th Ed, Wiley, 2005.

COURSE CODE	COURSE NAME	L	Т	Р	C	
191ME622	HEAT AND MASS TRANSFER	3	0	0	3	
	COURSE OBJECTIVES					
• To ap	oply the mechanisms of heat transfer under steady and transient condi-	tions				
• To ap	pply the concepts of heat transfer through extended surfaces					
• To le mass	arn the thermal analysis and sizing of heat exchangers and to apply t transfer	he ba	sic co	oncep	ts of	
UNIT 1	CONDUCTION			12		
General Differential equation of Heat Conduction–Cartesian and Polar Coordinates – One Dimensional Steady State Heat Conduction — plane and Composite Systems – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use of Heisler's charts.						
UNIT 2	CONVECTION			12		
Free and For Convection of	ced Convection - Hydrodynamic and Thermal Boundary Layer. Free luring external flow over Plates and Cylinders and Internal flow throu	and F Igh tu	orcec bes.	ļ		
UNIT 3	PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS		12			
Nusselt's the and condens Analysis – L	cory of condensation - Regimes of Pool boiling and Flow boiling. Co ation. Heat Exchanger Types - Overall Heat Transfer Coefficient MTD method - NTU method.	orrelat – For	tions uling	in boi Facto	iling ors -	
UNIT 4	RADIATION		12			
Black Body Radiation the	Radiation – Grey body radiation - Shape Factor – Electrical Analogy ough gases	– Rad	liatio	n Shie	elds.	
UNIT 5	IT 5 MASS TRANSFER		12			
Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy – Convective Mass Transfer Correlations.						
Total: 60 Periods						
COURSE OUTCOMES						
On successful completion of the course, students will be able to						

CO1	Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems				
CO2	Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems				
CO3	Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems				
CO4 Explain basic laws for Radiation and apply these principles to radiative heat transfer different types of surfaces to solve problems					
CO5	Apply diffusive and convective mass transfer equations and correlations to solve problems for different applications				
REFERENCES					
	REFERENCES				
1. Ho	REFERENCES Iman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000.				
1. Ho 2. Yu	REFERENCES Iman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000. nus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition 2015				
1. Ho 2. Yu 3. Fra & S	REFERENCES Iman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000. nus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition 2015 nk P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley Sons, 1998.				
 Ho Yu Fra & S Ko De 	REFERENCES Iman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000. nus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition 2015 nk P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley Sons, 1998. thandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Ihi, 1998.				
 Ho Yu Fra & S Ko Ko De Na Tra 	REFERENCES Iman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000. nus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition 2015 nk P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley Sons, 1998. thandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Ihi, 1998. g, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, 2002 4. Ozisik, M.N., "Heat insfer", McGraw Hill Book Co., 1994.				

COURSE CODE	COURSE NAME	L	Т	Р	C		
191ME623	FINITE ELEMENT ANALYSIS	3	0	0	3		
	COURSE OBJECTIVES						
To inTo ap	troduce the concepts of mathematical modeling of engineering problopreciate the use of finite element methods to a range of engineering	ems probl	ems				
UNIT 1	INTRODUCTION		9				
Historical B equations – I Residual Me concepts of t	Historical Background – Mathematical Modeling of field problems in Engineering – Governing equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.						
UNIT 2	ONE-DIMENSIONAL PROBLEMS			9			
One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices – Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation –Transverse deflections and Natural frequencies of beams.							
UNIT 3	TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS			9			
Second Orde Element for Application elements – H	er 2D Equations involving Scalar Variable Functions – Variationa mulation – Triangular elements – Shape functions and element r to Field Problems – Thermal problems – Torsion of Non circular ligher Order Elements.	l forn natric shafts	nulatio es an s –Qu	on —F d vec adrila	inite tors. teral		
UNIT 4	TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS			9			
Equations of temperature	f elasticity – Plane stress, plane strain and axisymmetric problem effects – Stress calculations – Plate and shell elements.	s – B	ody f	forces	and		
UNIT 5	ISOPARAMETRIC FORMULATION			9			
Natural co-ordinate systems – Isoparametric elements – Shape functions for isoparametric elements – One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems – Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software							
	Total: 45 Periods						
COURSE OUTCOMES							

On	On successful completion of the course, students will be able to						
CC)1	Summarize the basics of finite element formulation					
CO2 Apply finite element formulations to solve one dimensional Problems		Apply finite element formulations to solve one dimensional Problems					
CC)3	Apply finite element formulations to solve two dimensional scalar Problems					
CC)4	Apply finite element method to solve two dimensional Vector problems					
СС)5	Apply finite element method to solve problems on isoparametric element and dynamic Problems.					
		REFERENCES					
1.	Red 200	dy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 5.					
2.	Sesl 200	nu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 7.					
3.	Bha 2003	tti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons, 5					
4.	 Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 1990. 						
5.	Log	an, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002.					
6.	Rao 2004	, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 4.					
7.	Rob of F	ert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications inite Element Analysis", 4th Edition, Wiley Student Edition, 2002.					

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME62A	FINITE ELEMENT METHOD LABORATORY	0	0	4	2		
	COURSE OBJECTIVES						
• To gi	ve exposure to software tools needed to analyze engineering problems						
• To ex	pose the students to different applications analysis tools						
LIST OF EX	VPERIMENTS						
1. Force and	Stress analysis using link elements in Trusses						
2. Force and	Stress analysis using link elements in cables						
3. Stress and	deflection analysis in beams with simply support conditions						
4. Stress and	deflection analysis in beams with fixed support conditions						
5. Stress and	deflection analysis in beams with overhanging support conditions						
6. Stress anal	ysis of flat plates and simple shells						
7. Stress anal	ysis of axi – symmetric components.						
8. Thermal st	ress and heat transfer analysis of plates.						
9. Thermal st	ress analysis of cylindrical shells.						
10. Vibration	analysis of spring-mass systems.						
11. Model an	alysis of Beams.						
12. Harmonio	e analysis of simple systems.						
13. Transient	and spectrum analysis of simple systems.						
14. Spectrum	14. Spectrum analysis of simple systems.						
	TOTAL	: 60	PE	RIO	DS		
	COURSE OUTCOMES						
On successfu	l completion of the course, students will be able to						
CO1 Mod	el experiments to meet real world system						

CO2 Analyse experiments and evaluate the performance

Sl.No.	Description of Equipment	Quantity
1.	Computer Work Station	15 No.
2.	Color Desk Jet Printer	1 No.

25 licenses

Suitable Software for Finite Element analysis

3.

REQUIREMENTS FOR A BATCH OF 30 STUDENTS

COUR COD	RSE DE	COURSE NAME	L	Т	Р	С	
191ME	62B	THERMAL ENGINEERING LABORATORY	0	0	4	2	
	COURSE OBJECTIVES						
LIST O 1. Exp stroke e 2. Exp 3. Dete 4. Perf 5. Vari 6. Hea 7. Perf 8. Perf 9. IC e 10. The 11. Dete 12. Dete 13. Dete 13. Dete 14. Hea 15. Effe 16. Exp 17. Exp	To Stu To stu • To stu • To s • To s	dy the characteristics of fuels/Lubricates used in IC Engines dy the value timing diagram and performance of IC Engines tudy the Performance of steam generator/ turbine tudy the heat transfer phenomena predict the relevant coefficient using in tudy the performance of refrigeration cycle / component PERIMENTS ntal study on valve timing diagram in 4-stroke engine and port timing dia ntal study on port timing diagram in 2-stroke engine cut model. tion of Flash Point and Fire Point of various fuels / lubricants. nee test on constant speed 4-stroke diesel engine. peed test on multi-cylinder diesel engine. nee test on 4-stroke diesel engine. nee test on high pressure two stage reciprocating air compressor. nee testing of boiler and steam turbine. performance evaluation using PC interface. onductivity measurement of pipe insulation using lagged pipe apparatus. ation of heat transfer coefficient under natural convection from a vertical ation of Thermal conductivity of insulating material Using composite wal fer from pin-fin apparatus (natural & forced convection modes). neess of Parallel / counter flow heat exchanger. nt of heating, ventilation and air conditioning unit. nt on refrigeration tutor.	gran cylin	men n in nder d ins	tatio 2 –	n	
		TOTAL COURSE OUTCOMES.	.: 60	PE.	RIO	DS	
On succ	essful	completion of the course, students will be able to					
CO1	Mode	el experiments to meet real world system					
CO2	Anal	yse experiments and evaluate the performance					

REQUIREMENTS	FOR A BATCH O	F 30 STUDENTS
--------------	---------------	---------------

Sl.No.	Description of Equipment	Quantity
1.	I.C Engine – 2 stroke and 4 stroke model	1 No. each
2.	Apparatus for Flash and Fire Point	1 No.
3.	4-stroke Diesel Engine with mechanical loading	1 No.
4.	4-stroke Diesel Engine with hydraulic loading	1 No.
5.	4-stroke Diesel Engine with electrical loading	1 No.
6.	Multi-cylinder Petrol Engine	1 No.
7.	Single cylinder Petrol Engine	1 No.
8.	Data Acquisition system with any one of the above engines	1 No.
9.	Steam Boiler with turbine setup	1 No.
10.	Guarded plate apparatus	1 No.
11.	Lagged pipe apparatus	1 No.
12.	Natural convection-vertical cylinder apparatus	1 No.
13.	Forced convection inside tube apparatus	1 No.
14.	Composite wall apparatus	1 No.
15.	Thermal conductivity of insulating powder apparatus	1 No.
16.	Pin-fin apparatus	1 No.
17.	Stefan-Boltzmann apparatus	1 No.
18.	Emissivity measurement apparatus	1 No.
19.	Parallel/counter flow heat exchanger apparatus	1 No.
20.	Single/two stage reciprocating air compressor	1 No.
21.	Refrigeration test rig	1 No.
22.	Air-conditioning test rig	1 No.

COURSE CODE	COURSE NAME	L	Т	Р	С		
191HS701	PRINCIPLES OF MANAGEMENT	3	0	0	3		
	COURSE OBJECTIVES						
• To enprincip	• To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization						
UNIT 1	INTRODUCTION TO MANAGEMENT AND ORGANIZATION	IS		9			
Definition of managerial ro contingency a public and priv in Management	Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company- public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.						
UNIT 2	MANAGEMENT BY OBJECTIVES			9			
Nature and purpose of planning – planning process – types of planning – objectives – setting objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.							
UNIT 3 COORDINATING ACTIVITIES AND RESOURCES							
UNIT 3	COORDINATING ACTIVITIES AND RESOURCES			9			
UNIT 3 Nature and putypes – Line a decentralization Training and b	COORDINATING ACTIVITIES AND RESOURCES rpose – Formal and informal organization – organization chart – organiz and staff authority – departmentalization – delegation of authority – ce on – Job Design - Human Resource Management – HR Planning, Recruit Development, Performance Management , Career planning and managem	atior entral tmen nent.	ı stru lizat t, se	9 uctur ion a lecti	re – and on,		
UNIT 3 Nature and put types – Line a decentralization Training and D UNIT 4	COORDINATING ACTIVITIES AND RESOURCES rpose – Formal and informal organization – organization chart – organiz and staff authority – departmentalization – delegation of authority – ce on – Job Design - Human Resource Management – HR Planning, Recruit Development, Performance Management , Career planning and managem LEADERSHIP AND COMMUNIVATION	atior entral tmen nent.	ı stru lizat t, se	9 actur ion a lecti 9	re – and .on,		
UNIT 3 Nature and put types – Line a decentralization Training and D UNIT 4 Foundations of techniques – communication	COORDINATING ACTIVITIES AND RESOURCES rpose – Formal and informal organization – organization chart – organiz and staff authority – departmentalization – delegation of authority – ce on – Job Design - Human Resource Management – HR Planning, Recruit Development, Performance Management , Career planning and managem LEADERSHIP AND COMMUNIVATION of individual and group behaviour – motivation – motivation theories job satisfaction – job enrichment – leadership – types and theories on – process of communication – barrier in communication – effective com on and IT.	atior entral tmen nent. of lo omm	n stru lizat t, se noti ¹ eade	9 Lictur ion a lecti 9 vatio ership catio	re – and on, pnal p – n –		
UNIT 3 Nature and put types – Line a decentralization Training and 1 UNIT 4 Foundations of techniques – communication communication techniques 5	COORDINATING ACTIVITIES AND RESOURCES rpose – Formal and informal organization – organization chart – organiz and staff authority – departmentalization – delegation of authority – ce on – Job Design - Human Resource Management – HR Planning, Recruit Development, Performance Management , Career planning and managem LEADERSHIP AND COMMUNIVATION of individual and group behaviour – motivation – motivation theories job satisfaction – job enrichment – leadership – types and theories on – process of communication – barrier in communication – effective com on and IT. MONITORING AND EVALUATING ACTIVITIES	atior entrai tmen nent. - n of le	n stru lizat t, se noti ^v eade	9 uctur ion a lecti 9 vatio ership catio 9	re – and on, pnal p – n –		
UNIT 3 Nature and put types – Line a decentralization Training and D UNIT 4 Foundations of techniques – communication communication UNIT 5 System and pr and IT in Mar direct and press	COORDINATING ACTIVITIES AND RESOURCES rpose – Formal and informal organization – organization chart – organiz and staff authority – departmentalization – delegation of authority – ce on – Job Design - Human Resource Management – HR Planning, Recruit Development, Performance Management , Career planning and managem LEADERSHIP AND COMMUNIVATION of individual and group behaviour – motivation – motivation theories job satisfaction – job enrichment – leadership – types and theories on – process of communication – barrier in communication – effective co on and IT. MONITORING AND EVALUATING ACTIVITIES process of controlling – budgetary and non-budgetary control techniques – unagement control – Productivity problems and management – control and ventive control – reporting.	atior entral tmen nent. of le omm	n stru lizat t, se notiv eade nunid	9 actur ion a lecti 9 vatio ership catio 9 mput nanc	re – and on, onal p – n – ters ce –		
UNIT 3 Nature and put types – Line a decentralization Training and D UNIT 4 Foundations of techniques – communication communication UNIT 5 System and pre and IT in Mar direct and pre	COORDINATING ACTIVITIES AND RESOURCES rpose – Formal and informal organization – organization chart – organiz and staff authority – departmentalization – delegation of authority – ce on – Job Design - Human Resource Management – HR Planning, Recruit Development, Performance Management , Career planning and managem LEADERSHIP AND COMMUNIVATION of individual and group behaviour – motivation – motivation theories job satisfaction – job enrichment – leadership – types and theories on – process of communication – barrier in communication – effective com and IT. MONITORING AND EVALUATING ACTIVITIES occess of controlling – budgetary and non-budgetary control techniques – unagement control – Productivity problems and management – control and ventive control – reporting.	atior entral tmen nent. of lo omm ase o d per otal:	n stru lizat t, se notiv eade unio f con	9 actur ion a ilecti 9 vatio ership catio 9 mput nanc Perio	re – and on, onal p – n – ters ce –		

On successful completion of the course, students will be able to				
CO1	Understanding of managerial functions like planning, organizing, staffing, leading & controlling			
CO2	Basic knowledge on international aspect of management			
CO3	Apply planning in the business process			
CO4	Apply the concepts of organizing and directing the business process			
CO5	Apply various means of controlling in a company to the benefit of organization			
REFERENCES				
1. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004				

- 2. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 10th Edition, 2009.
- 3. Harold Koontz & Heinz Weihrich, "Essentials of Management", Tata McGraw Hill, 1998.
- 4. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 5. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 7thEdition, Pearson Education, 2011.
- 6. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999.

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME721	POWER PLANT ENGINEERING	3	0	0	3		
	COURSE OBJECTIVES						
• To provide an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.							
UNIT 1	COAL BASED THERMAL POWER PLANTS			9			
Rankine cycl Boilers, Turb handling, Dra for power pla	Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems. Load curve for power plants- Clean coal technology						
UNIT 2	DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS			9			
Otto, Diesel, power plants. load power p	Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel a Combined Cycle Power Plants. Integrated Gasifier based Combined Cycl lants	and (e sys	Gas ' sterr	Turb 1s. Po	ine eak		
UNIT 3	NUCLEAR POWER PLANTS			9			
Basics of Nu Reactors : B Uranium reac for Nuclear P	clear Engineering, Layout and subsystems of Nuclear Power Plants, Wor oiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CAN etor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. S ower plants. Nuclear waste handling methods.	king ada Safet	of I Deu zy m	Nucl teriu easu	ear m- res		
UNIT 4	RENEWABLE ENERGY BASED POWER PLANTS			9			
Principle, Co Thermal, Bio use.	Principle, Construction and working of Wind, Tidal, SolarPhoto Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems. Medium and small sized power plants for individual's use.						
UNIT 5	UNIT 5 ENERGY ECONOMICS& ENVIRONMENTAL IMPACTS OF POWER PLANTS				9		
Power tariff relative meri technologies plants emissi	Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants. Standards for power plants emission - Carbon emission control techniques.						
Total: 45 Periods							

	COURSE OUTCOMES						
Upon	the completion of this course the students will be able to,						
CO1	Explain the layout, construction and working of the components inside a thermal power plant.						
CO2	Explain the layout, construction and working of the components inside a Diesel, Gas and Combined cycle power plants.						
CO3	Explain the layout, construction and working of the components inside nuclear power plants.						
CO4	Explain the layout, construction and working of the components inside Renewable energy power plants.						
CO5	Explain the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.						
	REFERENCES						
1. Na Lt	ag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company d., 2008.						
2. El-Wakil. M.M., "Power Plant Technology", Tata McGraw – Hill Publishing Company Ltd., 2010.							
3. Go wi	odfrey Boyle, "Renewable energy", Open University, Oxford University Press in association th the Open University, 2004.						
4. Th Ec	 Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw – Hill, 1998. 						

COURSE CODE	COURSE NAME L		Т	Р	С	
191ME531	AUTOMOBILE ENGINEERING	3	0	0	3	
COURSE OBJECTIVES						
• To understand the construction and working principle of various parts of an automobile.						
• To have the knowledge for assembling and dismantling of engine parts and transmission s						
UNIT 1	VEHICLE STRUCTURE AND ENGINES			9		
Types of auto aerodynamics materials, var	Types of automobiles vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC engines –components-functions and materials, variable valve timing (VVT).					
UNIT 2	ENGINE AUXILIARY SYSTEMS			9		
Electronically injection syste Electronic ign Turbo charge Emission nor	Electronically controlled gasoline injection system for SI engines, electronically controlled diesel injection system (Unit injector system, Rotary distributor type and common rail direct injection system), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Turbo chargers (WGT, VGT), Engine emission control by three way catalytic converter system, Emission norms (Euro and BS).					
UNIT 3	TRANSMISSION SYSTEMS			9		
Clutch-types transfer box, and rear axle,	and construction, gear boxes- manual and automatic, gear shift mechanis fluid flywheel, torque converter, propeller shaft, slip joints, universal joi Hotchkiss Drive and Torque Tube Drive.	sms, nts,	Ove Diff	er dri Teren	ive, tial	
UNIT 4	STEERING, BRAKES AND SUSPENSION SYSTEMS			9		
Steering geor Suspension S electronic bra	netry and types of steering gear box-Power Steering, Types of Front ystems, Pneumatic and Hydraulic Braking Systems, Antilock Braking ke force distribution (EBD) and Traction Control.	Axl Sys	e, T tem	ypes (AB	of SS),	
UNIT 5	ALTERNATIVE ENERGY SOURCES			9		
Use of Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles- Engine modifications required –Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students.						
	TOTAL	.: 45	PE	RIO	DS	
COURSE OUTCOMES						

On	On successful completion of the course, students will be able to				
CO	CO1 Explain the various parts of the automobile and their functions and materials.				
CO2 Discuss the engine auxiliary systems and engine emission control		Discuss the engine auxiliary systems and engine emission control			
CC)3	Distinguish the working of different types of transmission systems			
CO)4	Explain the Steering, Brakes and Suspension Systems.			
CC)5	Predict possible alternate sources of energy for IC Engines			
		REFERENCES			
1.	Jain Dell	K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New hi, 2002.			
2.	Kirj Dell	pal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New hi, 13th Edition 2014.			
3.	Gan	esan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2012.			
4.	Hei	nz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.			
5.	5. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.				
6.	. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart - Will Cox Company Inc, USA, 1978.				
7.	Nev	vton, Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.			

COURS CODE		COURSE NAME		L	Т	Р	С
191ME5	2	BUSINESS ANALYTICS		3	0	0	3
COURSE OBJECTIVES							
• To introduce the basic concept of machine learning, the application of business analysis, and expose to the basic concepts of Data Science Project Life Cycle.							and
UNIT 1	INTRODUCTION TO BUSINESS ANALYTICS 9						
Historical Business Scientists	Overview of dat nalytics, What oles and Respo	analysis, Data Scientist vs. Data Engir is data science, Why Data Science, A sibility	neer vs. Business An Applications for dat	nalys a sc	st, C ienc	aree e, D	r in Pata
UNIT 2		DATAMANAGEMENT				9	
Data Coll of data q Business Interpreta	Data Collection, Data Management, Big Data Management, Organization/sources of data, Importance of data quality, Dealing with missing or incomplete data, Data Visualization, Data Classification, Business Requirement, Data Acquisition, Data Preparation, Hypothesis and Modeling, Evaluation and Interpretation, Deployment, Operations, Optimization.					nce on, and	
UNIT 3		INTRODUCTION TO DATA MI	NING			9	
The origi concept o	of Data Mini Association An	g, Data Mining Tasks, OLAP and Mu lysis and Cluster Analysis.	ltidimensional data	ana	lysis	s, Ba	ısic
UNIT 4		NTRODUCTION TO MACHINE LE	CARNING			9	
History and Supervise Machine	Evolution, AI Learning, Unst earning System	volution, Statistics Vs Data Mining Vs pervised Learning, Reinforcement Learn	, Data Analytics Vs ning, Frameworks f	, Da or bı	ta So uildi	cienc ng	æ,
UNIT 5		APPLICATION OF BUSINESS AN	ALYSIS			9	
Retail An Analytics	lytics, Marketi	g Analytics, Financial Analytics, He	ealthcare Analytics	, Su	pply	Ch	ain
TOTAL: 45 PERIODS							
On succes	COURSE OUTCOMES: On successful completion of the course, students will be able to						
CO1 [derstand the ba	ics of business analysis and Data Scien	се				
CO2 U	derstand data r	erstand data management and handling and Data Science Project Life Cycle					

CC	Understand the data mining concept and its techniques					
CC	CO4 Understand and Analyzing machine learning concept					
CO5 Understand the application of business analysis in different domain		Understand the application of business analysis in different domain				
		REFERENCES				
1.	1. Tan, P.N., Steinbach, M. and Kumar, V., "Introduction to data mining", Pearson Education India. 2016					
2.	Koc	ole, G. "An Introduction to Business Analytics", Lulu.com, 2019				
3.	Poo Met	chiraju, B. and Seshadri, S., "Essentials of Business Analytics: An Introduction to the hodology and Its Applications", Springer. 2019				
4.	Mül scie	ller, A.C. and Guido, S.,." Introduction to machine learning with Python: a guide for data ntists". O'Reilly Media, Inc., 2016				
5.	May wor	yer-Schönberger, V. and Cukier, K.,. Big data: A revolution that will transform how we live, k, and think. Houghton Mifflin Harcourt. 2013				

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME533	COMPUTER INTEGRATED MANUFACTURING	3	0	0	3		
COURSE OBJECTIVES							
 To introd To provid To impar To learn t To provid Office provided 	 To introduce the basic concepts of Computer Integrated Manufacturing (CIM). To provide knowledge on Group Technology and Computer Aided Process Planning To impart knowledge on Shop Floor Control and Flexible Manufacturing Systems. To learn the various CIM implementation and data communication techniques. To provide knowledge on the concept of Manufacturing automation protocol, Technical Office protocol and database terminology 						
UNIT 1	INTRODUCTION			9)		
The changing and software CAD/CAM i	g manufacturing and management scene, External communication, Isla e, dedicated and open systems, manufacturing automation protoco ntegration.	ands ol, i	of a ntro	auto duct	mation ion to		
UNIT 2	GROUP TECHNOLOGY AND COMPUTER AIDED PROCE PLANNING	SS			9		
Classification - Benefits of integration- approaches.	and coding - DCLASS, MICLASS and OPITZ coding systems. Facility G.T - cellular manufacturing. Process planning, role of process plann approaches to computer aided process planning- variant approac	y des iing ch a	sign in (Ind	usin CAD gen	ig G.T. //CAM erative		
UNIT 3	SHOP FLOOR CONTROL AND FMS		9				
Shop floor co technology - material hand	ontrol phases -factory data collection system -automatic identification automated data collection system. FMS- components of FMS- types lling and storage systems- FMS layout-computer control systems-appli	metl -FN	hods IS v on a	s- Βa vork nd b	ar code station enefits		
UNIT 4	CIM IMPLEMENTATION AND DATA COMMUNICATION			9			
System modelling tools- ICAM definition (IDEF) models, activity cycle diagram, CIM open system architecture (CIMOSA) - manufacturing enterprise wheel- CIM architecture- Product data management, implementation-software. Communication fundamentals- local area networks (LAN) -topology -LAN implementations - network management and installations.							
UNIT 5	UNIT 5OPEN SYSTEM AND DATABASE FOR CIM9						
Open systems-open system inter-connection - manufacturing automation protocol and technical office protocol-(MAP/TOP).Development of databases -database terminology architecture of database							

systems- data modeling and data associations -relational data bases – database operators - advantages of data base and relational database

TOTAL: 45 PERIODS COURSE OUTCOMES On successful completion of the course, students will be able to **CO1** Assess CAD/CAM integration for changing manufacturing and management scene Construct a machine cell using the concepts of Group Technology and Computer Aided Process **CO2** Planning CO3 Select the suitable material handling and storage system for Flexible Manufacturing Systems **CO4** Choose the suitable CIM implementation and data communication techniques **CO5** Use various protocols and database terminology in CIM REFERENCES 1. Mikell P Groover, Automation of production systems and computer integrated manufacturing, Pearson Education, United States of America, 2008. 2. Lee Kunwoo, CAD, CAM, CAE systems, Addison Wesley, United States of America, 1999. 3. Kant Vajpayee S, Principles of Computer Integrated Manufacturing, Prentice Hall, New Delhi, 2003. 4. Radhakrishnan P, Subramanyan S and Raju V, CAD, CAM, CIM, Second Edition New Age International Pvt. Ltd, New Delhi, 2000.

COURSE CODE	COURSE NAME	L	Т	Р	С	
191ME535	FUNDAMENTALS OF NANO SCIENCE	3	0	0	3	
COURSE OBJECTIVES						
• To learn about basis of nanomaterial science, preparation method, types and application						
UNIT 1	INTRODUCTION			9		
Nano scale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thin films multi layered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).						
UNIT 2	GENERAL METHODS OF PREPARATION			9		
Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.						
UNIT 3	NANOMATERIALS		9			
Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays- functionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications.						
UNIT 4	CHARACTERIZATION TECHNIQUES			9		
X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation.						
UNIT 5	APPLICATIONS OF NANOSCIENCE			9		
NanoInfoTech- Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery.						
TOTAL: 45 PERIODS						
COURSE OUTCOMES:						
On su	On successful completion of the course, students will be able to					
---	---	--	--	--	--	--
CO1	Explain about the science of nano materials					
CO2	CO2 Apply the fundamentals of Nano-Science in the preparation of nano materials					
CO3	Explain characteristics of Nano-material					
CO4	Explain characterisation techniques of Nano-material					
CO5 Explain characteristics of Nano-science						
REFERENCES						
	REFERENCES					
1. A A	REFERENCES S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and pplications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.					
1. A A 2. N C	REFERENCES S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and pplications", Institute of Physics Publishing, Bristol and Philadelphia, 1996. John Dinardo, "Nanoscale Characterization of surfaces & Interfaces", 2nd edition, Weinheim ambridge, Wiley-VCH, 2000.					
1. A A 2. N C 3. G	REFERENCES S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and pplications", Institute of Physics Publishing, Bristol and Philadelphia, 1996. John Dinardo, "Nanoscale Characterization of surfaces & Interfaces", 2nd edition, Weinheim ambridge, Wiley-VCH, 2000. Timp, "Nanotechnology", AIP press/Springer, 1999.					

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME534	ENTREPRENEURSHIP DEVELOPMENT	3	0	0	3		
	COURSE OBJECTIVES						
• To de entrep	• To develop and strengthen entrepreneurial quality and motivation in students and to impart basic entrepreneurial skills and understanding to run a business efficiently and effectively.						
UNIT 1	ENTREPRENEURSHIP			9			
To Entreprer Entrepreneur	neur – Types of Entrepreneurs – Difference between Entrepreneur ar ship in Economic Growth, Factors Affecting Entrepreneurial Growth	ıd Iı	ntraj	prene	eur,		
UNIT 2	MOTIVATION			9			
Major Motive Games, Then – Need, Obje	Major Motives Influencing an Entrepreneur – Achievement Motivation Training, Self Rating, Business Games, Thematic Apperception Test – Stress Management, Entrepreneurship Development Programs – Need, Objectives.						
UNIT 3	BUSINESS			9			
Small Enterprises – Definition, Classification – Characteristics, Ownership Structures – Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies.				ject less 1 of and			
UNIT 4	FINANCING AND ACCOUNTING			9			
Need – Sour working Capi	ces of Finance, Term Loans, Capital Structure, Financial Institution, tal, Costing, Break Even Analysis, Taxation – Income Tax, Excise Duty	Man – Sa	agei les T	ment Гах.	of		
UNIT 5	SUPPORT TO ENTREPRENEURS			9			
Sickness in su Business Incu industry – Ex	Sickness in small Business – Concept, Magnitude, Causes and Consequences, Corrective Measures - Business Incubators – Government Policy for Small Scale Enterprises – Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting.						
	TOTAL	.: 45	PE	RIO	DS		
On successfu	COURSE OUTCOMES: I completion of the course, students will be able to						
CO1 Expl	ain the fundamental concepts of entrepreneurship						

CO2	Elaborate in detail about achievement Motivation Training			
CO3	Explain about the steps involved in setting up a Business			
CO4	Elaborate in detail about Finance related aspects of entrepreneurship			
CO5	Explain about the different support to entrepreneurs to run business successfully			
	REFERENCES			
1. Kł	anka. S.S., "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Nagar, New Delhi, 2013.			
2. Do Le	 Donald F Kuratko, "Entreprenuership – Theory, Process and Practice", 9th Edition, Cengage Learning, 2014. 			
3. Hi	3. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.			
4. M Dr	athew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition eam tech, 2005.			
5. Ra Ex De	jeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.EDII "Faulty and ternal Experts – A Hand Book for New Entrepreneurs Publishers: Entrepreneurship velopment", Institute of India, Ahmadabad, 1986.			

COURSE CODE	COURSE NAME	L	Т	Р	C		
191ME630	GAS DYNAMICS AND JET PROPULSION	3	0	0	3		
	(Use of standard Gas tables data book is permitted)						
	COURSE OBJECTIVES						
• To understand the basic difference between incompressible and compressible flow and gain knowledge on compressible flow through ducts, jet propulsion							
UNIT 1	FUNDAMENTALS OF COMPRESSIBLE FLOW			9			
Ideal gas rela Mach cone a pressure, den various regio	ationship, The adiabatic energy equation, Mach number and its signifiend Mach angle, static and stagnation states, relationship between stagsity and enthalpy in terms of Mach number, stagnation velocity of sourcess of flow, Effect of Mach number on compressibility, Area velocity	cance gnatic nd, re relati	e, Ma on ten feren onshi	ch wa npera ce spe p.	ture, veds,		
UNIT 2	ONE DIMENSIONAL ISENTROPIC FLOW			9			
One dimensi nozzles unde ratio as func pressure ratio flow.	onal isentropic flow in ducts of varying cross-section- nozzles and di er varying pressure ratio, mass flow rate in nozzles, critical propertie ction of Mach number, Impulse function, non-dimensional mass fl p, area ratio and Mach number, Working charts and gas tables, Appl	ffuser s and ow ra icatio	rs, op 1 chol ate in on of 1	eratic king, term Isentr	on of area as of opic		
UNIT 3	NORMAL SHOCK WAVES			9			
Developmen Prandtl-May variation of impossibility	Development of shock wave, Thickness of shock wave, governing equations, Strength of shock waves, Prandtl-Mayer relation, Rankine-Hugoniot relation, Mach number in the downstream of normal shock, variation of flow parameters across the normal shock, normal shock in Fanno and Rayleigh flows, impossibility of a rarefaction shock, supersonic diffusers, supersonic pitot tube.						
UNIT 4	FLOW IN CONSTANT AREA DUCT			9			
Fanno curve duct length, Simple heatin properties, m	Fanno curve and Fanno flow equations, solution of Fanno flow equations, variation of Mach no. with duct length, isothermal flow in constant area duct with friction, Experimental friction coefficients, Simple heating relation of a perfect gas, Rayleigh curve and Rayleigh flow equations, variations of flow properties, maximum heat transfer.						
UNIT 5	JET PROPULSION		9				
Introduction to Aircraft Jet Propulsion, Jet Engine Cycles - Thermodynamic Analysis of real cycles. Compressors and Turbines, Combustion Systems, Intakes and Propelling Nozzles, Aircraft Engine Installed Performance, Sizing & Matching. Ramjets, Scramjets and Pulse jets.							

COURSE OUTCOMES:

On successful completion of the course, students will be able to

- **CO1** Differentiate between incompressible and compressible flow
- **CO2** Apply the concept of compressible flows in variable area ducts
- **CO3** Examine the effect of compression and expansion waves in compressible flow
- **CO4** Apply the concept of compressible flows in constant area ducts

CO5 Use the concept of gas dynamics in Jet Propulsion

REFERENCES

- 1. S. M. Yahya, "Fundamental of Compressible flow", New age international Publication, Delhi, 2005.
- 2. P. Balachandran, "Fundamentals of compressible fluid dynamics", PHI Learning, New Delhi, 2006.
- 3. Ascher H. Shapiro, "The dynamics and thermodynamics of Compressible fluid flow", Volume-I, , the Ronald Press Company, New York., 1954.
- 4. E. Rathakrishnan, "Gas Dynamics", PHI Learning Pvt. Ltd, 2013.
- 5. P. Murugaperumal, Gas Dynamics and Jet Propulsion-, Scitech Publication, Chennai, 2005.
- 6. John D. Anderson," Modern Compressible Flow: With Historical Perspective", McGraw-Hill Higher Education, 1999.

COURSE CODE	COURSE NAME	L	Т	Р	С			
191ME631	HYDRAULICS AND PNEUMATICS	3	0	0	3			
COURSE OBJECTIVES								
• To pr and m	• To provide student with knowledge on the application of fluid power in process, construction and manufacturing Industries.							
• To pr power	• To provide students insights of the fluids and components utilized in modern industrial fluid power system.							
• To de power	velop a measurable degree of competence in the design, construction an r circuits.	d ope	eratio	n of f	luid			
UNIT 1	FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS			9				
Introduction Properties of loss – Work, Classification criteria of Lin	Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque Problems, Sources of Hydraulic power : Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary – Fixed and Variable displacement pumps – Problems.				ids - tion ump tion			
UNIT 2	HYDRAULIC ACTUATORS AND CONTROL COMPONENT	S		9				
Hydraulic A Hydraulic mo – Types, Cor Reservoirs, P	ctuators: Cylinders – Types and construction, Application, Hydra otors - Control Components : Direction Control, Flow control and pres astruction and Operation – Servo and Proportional valves – Application Pressure Switches – Applications – Fluid Power ANSI Symbols – Probl	ulic sure ons – ems.	cush contr Acce	ionin ol va essori	g – lves ies :			
UNIT 3	HYDRAULIC CIRCUITS AND SYSTEMS			9				
Accumulator Pump, Pressu Control, Hyd	s, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, rostatic transmission, Electro hydraulic circuits, Mechanical hydraulic	ading Fail servo	g, Do -Safe o syst	uble , Spe ems.	ed			
UNIT 4	PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS		9					
Properties of air – Perfect Gas Laws – Compressor – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – Cascade method – Electro Pneumatic System – Elements – Ladder diagram – Problems, Introduction to fluidics and pneumatic logic circuits.								
UNIT 5	TROUBLE SHOOTING AND APPLICATIONS			9				

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools – Low cost Automation – Hydraulic and Pneumatic power packs.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On successful completion of the course, students will be able to

CO1	Explain the	Fluid power	and operation	of different	types of	pumps
-----	-------------	-------------	---------------	--------------	----------	-------

CO3 Explain the different types of hydraulic circuits and systems

CO4 Explain the working of different pneumatic circuits and systems

CO5 Summarize the various trouble shooting methods and applications of fluid power systems

REFERENCES

1. Anthony Esposito, "Fluid Power with Applications", Pearson Education 2005.

2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGrawHill, 2001.

3. Anthony Lal, "Oil hydraulics in the service of industry", Allied publishers, 1982.

4. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.

COUR COD	RSE DE	COURSE NAME	L	Т	Р	С		
191ME	632	INTELLECTUAL PROPERTY RIGHTS	3	0	0	3		
	COURSE OBJECTIVES							
•	• To gain an idea about Intellectual Property Rights, registration and its enforcement							
UNIT 1	L	INTRODUCTION				9		
Introdu Geogra WTO Researc	Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO –TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.							
UNIT	Г 2	REGISTRATION OF IPRs			9			
Meanin Indicati	g and ons, 7	practical aspects of registration of Copy Rights, Trademarks, Patents Trade Secrets and Industrial Design registration in India and Abroad	s, Ge	eogr	aphi	cal		
UNIT	Г З	AGREEMENTS AND LEGISLATIONS			9			
Internat of India	tional 1, Pate	Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agreement ant Amendment Act, Design Act, Trademark Act, Geographical Indicat	nt, Pation	aten Act.	t Ac	t		
UNIT	ſ 4	DIGITAL PRODUCTS AND LAW		9				
Digital Content Compet	Innov t Prote tition	vations and Developments as Knowledge Assets – IP Laws, Cyber Law ection – Unfair Competition – Meaning and Relationship between Unf and IP Laws – Case Studies.	[,] and air	l Dig	gital			
UNIT	r 5	ENFORCEMENT OF IPRs			9			
Infringe	ement	of IPRs, Enforcement Measures, Emerging issues – Case Studies.						
		TOTAL	: 45	PE	RIO	DS		
		COURSE OUTCOMES:						
On succ	cessfu	l completion of the course, students will be able to						
CO1	Mair	ntainintellectual property portfolio to enhance the value of the firm						
CO2	Expl	ain the procedures for registration of intellectual property rights						
CO3	Expl	ain the procedures for agreements and legislations for intellectual prop	berty	rig	hts			

CO	Explain the procedures for digital products and law in intellectual property rights						
CO	05	Explain the procedures for enforcementof IPRs					
	REFERENCES						
1.	V. S	Scople Vinod, Managing Intellectual Property, Prentice Hall of India Pvt Ltd, 2012.					
2. S. V. Satakar, Intellectual Property Rights and Copy Rights, EssEss Publications, New D 2002		7. Satakar, Intellectual Property Rights and Copy Rights, EssEss Publications, New Delhi, 2					
3.	Deł Tra	borah E. Bouchoux, Intellectual Property: The Law of Trademarks, Copyrights, Patents and de Secrets, Cengage Learning, Third Edition, 2012.					
4.	Pra Mc	buddha Ganguli, Intellectual Property Rights: Unleashing the Knowledge Economy, Graw Hill Education, 2011.					
5.	Edi Edv	ted by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, vard Elgar Publishing Ltd., 2013.					

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME633	PROFESSIONAL ETHICS IN ENGINEERING	3	0	0	3		
COURSE OBJECTIVES							
• To enable the students to create an awareness on Engineering Ethics and Human Values to instill Moral and Social Values and Loyalty and to appreciate the rights of others.							
UNIT 1	HUMAN VALUES			9			
Morals, value others – Livin Commitment meditation fo	Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.						
UNIT 2	ENGINEERING ETHICS			9			
Senses of 'E Moral Auton professional Ethical Theor	Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.				s – s of s of		
UNIT 3	ENGINEERING AS SOCIAL EXPERIMENTATION			9			
Engineering Balanced Out	as Experimentation – Engineers as responsible Experimenters – Code tlook on Law.	s of	Eth	ics –	- A		
UNIT 4	SAFETY, RESPONSIBILITIES AND RIGHTS		9				
Safety and R Respect for A Occupational – Discrimina	Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.						
UNIT 5	GLOBAL ISSUES			9			
Multinational Engineers as Moral Leader	l Corporations – Environmental Ethics – Computer Ethics – Weapons I Managers – Consulting Engineers – Engineers as Expert Witnesses and rship –Code of Conduct – Corporate Social Responsibility.	Deve I Ad	lopr viso	nent rs –	_		
	TOTAL	: 45	PE	RIO	DS		
	COURSE OUTCOMES:						
On successful completion of the course, students will be able to							

CC)1	Apply engineering ethics in society related problems
CC)2	Discuss the ethical issues related to engineering
CC)3	Relate the responsibilities and rights in the society
CC)4	Explain the safety, responsibilities and rights
CC)5	Discuss global issues related to ethical way of functioning as engineers
		REFERENCES
1.	Gov Indi	vindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of a, New Delhi, 2004.
2.	Mik Del	te W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New hi, 2003.
3.	Cha	rles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
4.	Cha and	rles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts Cases", Cengage Learning, 2009.
5.	Edn Eng	nund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and ineers", Oxford University Press, Oxford, 2001.
6.	Joh	n R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
7.	Lau and	ra P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity Social Responsibility" McGraw Hill education, India Pvt. Ltd., New Delhi, 2013.

COUR COD	RSE DE	COURSE NAME	L	Т	Р	С	
191ME	2634	WELDING TECHNOLOGY	3	0	0	3	
	COURSE OBJECTIVES						
• To understand the basics of welding and to know about the various types of welding processes .							
UNIT	Ր 1	GASANDARC WELDINGPROCESSES			9		
Fundam metal ar welding	nental c wel g proce	principles–air acetylene welding, oxy acetylene welding, carbon arc we ding, Submerged arc welding, TIG & MIG welding, plasma arc welding a esses -advantages, limitations and applications.	ldin and e	g, sł elect	nield ro sl	ed ag	
UNIT	Г 2	RESISTANCE WELDINGPROCESSES			9		
Spot we welding	elding, g and h	seam welding, projection welding, resistance butt welding, flash butt wel high frequency resistance welding processes- advantages, limitations and	ding appl	, per icati	cuss ons.	ion	
UNIT	Г З	SOLID STATE WELDINGPROCESSES			9		
Cold w welding	elding , roll	, diffusion bonding, Explosive welding, ultrasonic welding, Friction welding and hot pressure welding processes- advantages, limitations and	veldi appl	ng, icati	Forg ons.	ge	
UNIT	ſ 4	OTHER WELDINGPROCESSES			9		
Thermit stir weld vehicles	t weld ding, V S	ing, atomic hydrogen welding, electron beam welding, Laser beam weldi Under water welding, welding automation in aerospace, nuclear and surfa	ng, I .ce tr	Frict ansp	ion oort		
UNII	r 5	DESIGNOFWELD JOINTS,WELDABILITYANDTESTING WELDMENTS	OF			9	
Various and stai	weld	joint designs – welding defects– causes and remedies-weldability of alu steels. Destructive and non destructive testing of weldments.	mini	um,	cop	per,	
		TOTAI	.: 45	PE	RIO	DS	
		COURSE OUTCOMES:					
On succ	cessful	completion of the course, students will be able to					
CO1	Appl	ytheconstructionand workingprinciples of gasand arcwelding process					
CO2	Appl	ytheconstructionand workingprinciples of resistance weldingprocess					

CC	Apply the construction and working principles of various solid state welding process						
CC	4 Apply the construction and working principles of various special welding processes						
CC	Apply the concepts on weld joint design, weldability and testing of weldments						
	REFERENCES						
1.	Little, R.L., "Welding and welding Technology", Tata McGraw Hill Publishing Co., Ltd., New						
	Delhi, 34 th reprint, 2008.						
2.	ParmerR.S., "WeldingEngineeringandTechnology", 1 ^{sty} Edition, Khanna Publishers, New						
	Delhi,2008.						
3.	Parmer R.S., "Welding Processes and Technology", Khanna Publishers, NewDelhi, 1992.						
4.	AWS-Welding HandBook.8 th Edition. Vol-2. "Welding Process"						
5.	Christopher Davis. "Laser Welding- Practical Guide". Jaico Publishing House.						
6.	DavisA.C., "TheScienceandPracticeofWelding", CambridgeUniversity						
	Press,Cambridge, 1993						
7.	NadkarniS.V. "ModernArcWeldingTechnology", OxfordIBH Publishers,1 st Edition,2005.						
8.	SchwartzM.M."MetalsJoiningManual".McGrawHill Books, 1979.						
9.	Tylecote R.F. "TheSolid PhaseWeldingofMetals". EdwardArnold PublishersLtd. London						

COURSE CODE	COURSE NAME	L	Т	Р	С				
191ME635	REFRIGERATION AND AIR CONDITIONING	3	0	0	3				
	COURSE OBJECTIVES								
• To Ap system	• To Apply the underlying principles of operations in different Refrigeration & Air conditioning systems and components								
To pro	• To provide knowledge on design aspects of Refrigeration & Air conditioning systems								
UNIT 1 INTRODUCTION									
Introduction t properties – C	Introduction to Refrigeration - Unit of Refrigeration and C.O.P.– Ideal cycles- Refrigerants Desirable properties – Classification - Nomenclature - ODP & GWP.								
UNIT 2 VAPOUR COMPRESSION REFRIGERATION SYSTEM									
Vapor compression cycle - p-h and T-s diagrams - deviations from theoretical cycle – sub cooling and super heating- effects of condenser and evaporator pressure on COP- multipressure system - low temperature refrigeration - Cascade systems – problems. Equipments: Type of Compressors, Condensers, Expansion devices, Evaporators.									
UNIT 3	OTHER REFRIGERATION SYSTEMS			9					
Working prin refrigeration- - Vortex and	nciples of Vapour absorption systems and adsorption cooling system Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigera Pulse tube refrigeration systems.	ns – ation	- St - M	eam Iagn	jet etic				
UNIT 4	PSYCHROMETRIC PROPERTIES AND PROCESSES			9					
Properties of saturation, Re wet bulb temp streams.	moist Air-Gibbs Dalton law, Specific humidity, Dew point tempera elative humidity, Enthalpy, Humid specific heat, Wet bulb temperature for perature, Psychrometric chart; Psychrometric of air-conditioning processe	ture, Ther es, n	De moc nixir	gree lyna ng of	of mic air				
UNIT 5	AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION			9					
Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls.									
	TOTAL: 45 PERIODS								

	COURSE OUTCOMES:						
On su	On successful completion of the course, students will be able to						
CO1	Explain the basic concepts of Refrigeration						
CO2 Explain the Vapor compression Refrigeration systems and to solve problems							
CO3	Discuss the various types of Refrigeration systems						
CO4	Calculate the psychrometric properties and its use in psychrometric processes						
CO5	Explain the concepts of Air conditioning and to solve problems						
	REFERENCES						
1. A	rora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 2010.						
2. Jo	nes W.P., "Air conditioning engineering", 5th edition, Elsevier Butterworth-Heinemann, 2007.						
3. R	by J. Dossat, "Principles of Refrigeration", 4 th edition, Pearson Education Asia, 2009.						
4. St	oecker, W.F. and Jones J. W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 186.						

5. ASHRAE Hand book, Fundamentals, 2010.

COURS CODE	£	COURSE NAME	L	Т	Р	С			
191ME63	6	RENEWABLE SOURCES OF ENERGY	3	0	0	3			
		COURSE OBJECTIVES							
• At the end of the course, the students are expected to identify the new methodologies / technologies for									
	uu				0				
UNIT 1		INTRODUCTION			9				
World End Renewable Applicatio	World Energy Use – Reserves of Energy Resources – Environmental Aspects of Energy Utilisation – Renewable Energy Scenario in TamilNadu, India and around the World – Potentials - Achievements / Applications – Economics of renewable energy systems.								
UNIT 2	UNIT 2 SOLAR ENERGY								
Solar Rad direct The Conversio	ati rma n —	on – Measurements of Solar Radiation - Flat Plate and Concentrating Co al Applications – Solar thermal Power Generation - Fundamentals of Sol Solar Cells – Solar PV Power Generation – Solar PV Applications.	ollec ar Pl	tors 10t0	– So Vol	olar taic			
UNIT 3		WIND ENERGY			9				
Wind Data Details of	ı ar Wi	nd Energy Estimation – Types of Wind Energy Systems – Performance – nd Turbine Generator – Safety and Environmental Aspects	Site	Sel	ectic	n –			
UNIT 4		BIO - ENERGY			9				
Biomass d diesel – C	ireo oge	ct combustion – Biomass gasifiers – Biogas plants – Digesters – Ethanol p neration - Biomass Applications	orod	uctio	on –	Bio			
UNIT 5		OTHER RENEWABLE ENERGY SOURCES			9				
Tidal ener Hydrogen	gy and	 Wave Energy – Open and Closed OTEC Cycles – Small Hydro-Geoth Storage - Fuel Cell Systems – Hybrid Systems. 	nerm	al E	nerg	y –			
		ΤΟΤΑΙ	.: 45	PE	RIO	DS			
		COURSE OUTCOMES:							
On succes	sfu	completion of the course, students will be able to							
CO1 D	isc	uss the importance and Economics of renewable Energy							

CO2	Discuss the method of power generation from Solar Energy					
CO3	Discuss the method of power generation from Wind Energy					
CO4	Explain the method of power generation from Bio Energy					
CO5	Explain the Tidal energy, Wave Energy, OTEC, Hydro energy, Geothermal Energy, Fuel Cells and Hybrid Systems					
REFERENCES						
1. Rai	1 Rai G.D. "Non Conventional Energy Sources" Khanna Publishers. New Delhi 2011					

- 2. Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 2006.
- 3. Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2015.
- 4. David M. Mousdale -- "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2017
- 5. Freris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK, 1990.
- 6. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012. 5. Johnson Gary, L. "Wind Energy Systems", Prentice Hall, New York, 1985

COURSE CODE	COURSE NAME	L	T P		С	
191ME637	SYSTEMS ENGINEERING	3	0	0	3	
	COURSE OBJECTIVES					
• To in utiliza	troduce system engineering concepts to design the manufacturing systention of source for effective functioning	em fo	or o	ptim	um	
UNIT 1 INTRODUCTION						
Definitions of Systems Engineering, Systems Engineering Knowledge, Life cycles, Life-cycle phases, logical steps of systems engineering, Frame works for systems engineering.						
UNIT 2 SYSTEMS ENGINEERING PROCESSES						
Formulation of issues with a case study, Value system design, Functional analysis, Business Process Reengineering, Quality function deployment, System synthesis, Approaches for generation of alternatives.						
UNIT 3 ANALYSIS OF ALTERNATIVES- I						
Cross-impact Economic me Cost breakdo	analysis, Structural modelling tools, System Dynamics models wit odels: present value analysis – NPV, Benefits and costs over time, ROI, wn structure.	h ca IRR	ase .; W	stud ork a	ies, and	
UNIT 4	ANALYSIS OF ALTERNATIVES-II			9		
Reliability, A models, Quei models.	vailability, Maintainability, and Supportability models; Stochastic netwo ing network optimization, Time series and Regression models, Evaluation	orks a on of	and [f lar	Marl ge sc	cov ale	
UNIT 5	DECISION ASSESSMENT			9		
Decision asse making and V Engineering I	essment types, Five types of decision assessment efforts, Utility theory, G Voting approaches, Social welfare function; Systems Engineering method Management	roup s for	dec Sys	tems	1	
	Т	otal:	45]	Peri	ods	
	COURSE OUTCOMES					
Upon the con	pletion of this course the students will be able to,					
CO1 Expl	ain in detail about core principles of Systems Engineering					

CC)2	Describe different Systems Engineering processes					
CC)3	Perform analysis of alternatives in Systems Engineering for dynamics models					
CO4		Perform analysis of alternatives in Systems Engineering for large scale models					
CO5		Describe the different ways for decision assessment for designing effective system					
	REFERENCES						
1.	Geo	orge A Hazelrigg "Systems Engineering: An Approach to Information-Based Design", Prentice					
	Hal	l, 1996.					
2.	Ben	jamin A and Walter J Fabrycky "Systems Engineering and Analysis", Prentice Hall, 1998.					
3.	Ale	xander Kossiakoff and William N Sweet "Systems Engineering Principles and Practice",					
	Wiley Series in Systems Engineering and Management, 2011.						
4.	. Charles S Wasson, "System Engineering Analysis, Design, and Development: Concepts,						
	Prin	ciples, and Practices", Wiley Series in Systems Engineering and Management, 2005.					
5.	Ral	ph M. Stair, George Walter Reynolds, Thomas Chesney, "Principles of Business Information					
	Syst	tems", Cengage Learning, 2008.					

COURSE CODE	COURSE NAME	COURSE NAME L						
191ME638	TOTAL QUALITY MANAGEMENT	3	0	0	3			
	COURSE OBJECTIVES							
To lea	arn concepts, dimension quality and philosophies of TQM							
• To stu	dy the TQM principles and its strategies							
• To lea	• To learn the seven tools of statistical quality and management							
• To im	• To impart knowledge on TQM tools for continuous improvement							
• To in	troduce international quality management systems							
UNIT 1 INTRODUCTION								
Definition of Quality - Dimensions of Quality - Quality Planning - Quality costs – Analysis Techniques for Quality Costs - Basic concepts of Total Quality Management - Historical Review - Quality Statements - Strategic Planning, Deming Philosophy - Crosby philosophy – Continuous Process Improvement - Juran Trilogy, PDSA Cycle, 5S, Kaizen - Obstacles to TQM Implementation.								
UNIT 2	TQM PRINCIPLES			9				
Principles of satisfaction - Retention, En Performance Supplier Rati	Principles of TQM, Leadership Concepts, Role of Senior Management, Quality Council, Customer satisfaction - Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement - Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits - Supplier Partnership - Partnering, Sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures.							
UNIT 3	STATISTICAL PROCESS CONTROL (SPC)			9				
The seven too Population an P, nP, C, and Management	The seven tools of quality - Statistical Fundamentals - Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables X bar and R chart and attributes P, nP, C, and u charts, Industrial Examples, Process capability, Concept of six sigma - New seven Management tools.							
UNIT 4 TQM TOOLS								
Benchmarkir - Taguchi Qu Case studies	Benchmarking, Quality Function Deployment (QFD) - House of Quality, QFD Process, and Benefits - Taguchi Quality Loss Function - Total Productive Maintenance (TPM), FMEA - Stages of FMEA, Case studies							
UNIT 5	UNIT 5 QUALITY SYSTEMS 9							

Need for ISO 9000 and Other Quality Systems - Elements, Implementation of Quality System, Documentation, Quality Auditing, ISO 9000:2015, ISO 9001:2015 and ISO 9004:2018, TS 16949, ISO 14000, ISO 50001 - Concept, Requirements and Benefits

Total: 45 Periods

COURSE OUTCOMES

Upon the completion of this course the students will be able to,

CO1	Use the concepts,	dimension	of quality a	and philos	ophies of	TQM
-----	-------------------	-----------	--------------	------------	-----------	-----

CO2 Apply the principles of TQM and its strategies in industries

CO3 Apply the statistical quality tools and seven management tools

CO4 Choose the suitable TQM tools for continuous improvement

CO5 Use the concept of QMS, EMS and EnMS in industries

REFERENCES

- 1. Dale H.Bester filed, Total Quality Management, Pearson Education Inc., New Delhi, 2003
- 2. N.Gupta and B.Valarmathi, Total Quality Management, Tata McGraw-Hill Publishing Company Pvt. Ltd., New Delhi, 2009
- 3. James R.Evans and William M.Lidsay, The Management and Control of Quality, 2002
- 4. Dr.S.Kumar, Total Quality Management, Laxmi Publications Ltd. New Delhi, 2006
- 5. P.N.Muherjee, Total Quality Management, Prentice Hall of India, New Delhi, 2006

COUR COD	SE E	COURSE NAME	L	Т	Р	С		
191ME	639	UNCONVENTIONAL MACHINING PROCESSES	3	0	0	3		
		COURSE OBJECTIVES						
•] a	• To learn about various unconventional machining processes, the various process parameters and their influence on performance and their applications							
UNIT	1	INTRODUCTION			6			
Unconve	Unconventional machining Process – Need – classification – Brief overview.							
UNIT 2 MECHANICAL ENERGY BASED PROCESSES								
Abrasive Machini paramete	Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. (AJM, WJM, AWJM and USM). Working Principles – equipment used – Process parameters – MRR- Applications.							
UNIT	UNIT 3 ELECTRICAL ENERGY BASED PROCESSES							
Electric Finish an Wire cut	Electric Discharge Machining (EDM) - working Principle-equipment's-Process Parameters-Surface Finish and MRR- electrode / Tool – Power and control Circuits-Tool Wear – Dielectric – Flushing – Wire cut EDM – Applications.							
UNIT	CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES				D 11			
Chemica techniqu Principle ECG and	al ma ies of es of d EC	chining and Electro-Chemical machining (CHM and ECM)-Etchan f applying maskants - Process Parameters – Surface finish and MR ECM- equipments-Surface Roughness and MRR Electrical circuit-Proc H - Applications.	ts – R-A cess l	Ma ppli Para	skar catic mete	it - ons. ers-		
UNIT	5	THERMAL ENERGY BASED PROCESSES	10					
Laser B Machini	eam ng (E	machining and drilling (LBM), plasma Arc machining (PAM) and (BM). Principles – Equipment – Types - Beam control techniques – App	Elec plica	ctror tion	n Be s.	am		
		Τα	otal:	45]	Perio	ods		
		COURSE OUTCOMES						
Upon the	e con	pletion of this course the students will be able to,						
CO1	App	ly principles of unconventional machining in to practice						
CO2	Ana	yze various mechanical energy based unconventional machining proc	esse	s				
CO3	Ana	yze various electrical energy based unconventional machining process	ses					
CO4	Analyze various chemical and electro-chemical energy based unconventional machining processes							

CO	05	Analyze various thermal energy based unconventional machining processes							
	REFERENCES								
1.	1. Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd., New Delhi, 2007 2. Panday P.C. and Shan H.S. "Modern Machining Processes" Tata McGray Hill, New Delhi, 2007								
2.	Ben	edict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York, 1987.							
3. 4.	 Mc Geough, "Advanced Methods of Machining", Chapman and Hall, London, 1998. Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturin" 								
	Prer	tice Hall of India Pvt. Ltd., 8thEdition, New Delhi, 2001.							

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME731	COMPOSITE MATERIALS AND MECHANICS	3	0	0	3		
	COURSE OBJECTIVES						
• To ma testing	ake the students to understand different processing methods, issues, pro g methods of different composite materials.	pert	ies a	ınd			
• To pr	ovide the benefits gained when combining different materials into a cor	npos	site.				
UNIT 1	POLYMER MATRIX COMPOSITES			9			
Polymer resin fabrics – non – spray up p transfer mou aerospace, au	Polymer resins – thermosetting resins, thermoplastic resins – reinforcement fibres – rovings – woven fabrics – non woven random mats – various types of fibres. PMC processes – hand layup processes – spray up processes – compression moulding – reinforced reaction injection moulding – resin transfer moulding – Pultrusion – Filament winding – Injection moulding, Applications of PMC in aerospace, automotive industries						
UNIT 2	METAL MATRIX COMPOSITES			9			
Characteristic MMC, limita fraction – rul stir casting measurement	Characteristics of MMC, various types of metal matrix composites alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface-measurement of interface properties- applications of MMC in aerospace, automotive industries						
UNIT 3	CERAMIC MATRIX COMPOSITES			9			
Engineering of for CMC – ce ceramics – al - Hot pressin composites – vapour depos	Engineering ceramic materials – properties – advantages – limitations – monolithic ceramics - need for CMC – ceramic matrix - various types of ceramic matrix composites- oxide ceramics – non oxide ceramics – aluminum oxide – silicon nitride – reinforcements – particles- fibres -whiskers. Sintering - Hot pressing – Cold isostatic pressing (CIPing) – Hot isostatic pressing (HIPing). Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Sol-gel technique.						
UNIT 4	MECHANICS OF LAMINATES			9			
Lamina Con Hooke's Law Stiffness mat Basic Assum	stitutive Equations: Lamina Assumptions – Macroscopic Viewpoin v. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit ca rix (Qij), Definition of stress and Moment Resultants. Strain Displace ptions of Laminated anisotropic plates.	nt. (ise, (emei	Gen Orth nt re	eraliz 10tro 21atic	zed pic ons.		
UNIT 5	5 FLAT PLATE LAMINATES						
Laminate Co Laminates, A Lamina Prop stresses withi	Laminate Constitutive Equations – Coupling Interactions Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates						
	132						

COURSE OUTCOMES

Upon the completion of this course the students will be able to,

COL. Use of unreferit material to design polymer matrix composites	CO1:	Use of different	material to	design	polymer	matrix	composites
--	------	------------------	-------------	--------	---------	--------	------------

- CO2: Use of different material to design metal matrix composites
- CO3: Use of different material to design ceramic matrix composites
- CO4: Analyze the use of different material to design composites
- CO5: Analyze flat plate laminates using mathematical techniques to predict the macroscopic properties of different Laminates

REFERENCES

- 1. Mathews F. L. and Rawlings R. D., "Composite Materials: Engineering and Science", 1st Edition, Chapman and Hall, London, England, 1994.
- 2. Chawla K. K., "Composite materials", Second Edition, Springer-Verlag, 1998.
- 3. Clyne, T. W. and Withers, P. J., "Introduction to Metal Matrix Composites", Cambridge University Press, 1993.
- 4. Strong, A.B., "Fundamentals of Composite Manufacturing", SME, 1989.
- 5. Sharma, S.C., "Composite materials", Narosa Publications, 2000.

COURSE CODE	COURSE NAME	L	Т	Р	С				
191ME732	COMPUTATIONAL FLUID DYNAMICS	3	0	0	3				
	COURSE OBJECTIVES								
To int	troduce Governing Equations of viscous fluid flows								
• To introduce numerical modeling and its role in the field of fluid flow and heat transfer									
• To en and tu	able the students to understand the various discretization methods, solu urbulence modeling.	tion	pro	cedu	res				
• To create confidence to solve complex problems in the field of fluid flow and heat transfer by using high speed computers.									
UNIT 1	UNIT 1 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS								
Basics of co Momentum a Time-average	Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations – Chemical species transport – Physical boundary conditions – Time-averaged equations for Turbulent Flow – Turbulent–Kinetic Energy Equations.								
UNIT 2	FINITE DIFFERENCE METHODS FOR DIFFUSION			9					
Derivation of first and sec conduction. U	Finite difference equations – Simple finite difference methods – Gene cond order accuracy. Example problems on elliptic equations-St Use of Finite Difference methods.	ral N eady	Aeth -sta	iods te h	for leat				
UNIT 3	FINITE VOLUME METHODS FOR DIFFUSION		9						
Finite volum Parabolic equ Use of Finite	e formulation for steady state One, Two and Three dimensional diffus nations – Explicit and Implicit schemes – Example problems on parabo Volume methods.	ion olic	prol equa	olem	.s — ıs —				
UNIT 4	FINITE VOLUME METHOD FOR CONVECTION DIFFUSIO	N		9					
Steady one-d of discretizat Quick Schem	Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, Quick Schemes.								
UNIT 5	UNIT 5 APPLICATIONS OFCOMPUTATIONAL FLUID DYNAMICS								
Developing I vertical pope of a steam ge	Flow in a curved Pipe, Combined convection in a horizontal tube, m, Turbulent flow and heat transfer in internally finned tubes, Thermal hy nerator.	eltin drau	g ai lic a	oun analy	d a /sis				
	Total: 45 Periods								

Upon t	COURSE OUTCOMES Upon the completion of this course the students will be able to							
opont	- r r r							
CO1	Derive the governing equations and boundary conditions for Fluid dynamics							
CO2	Analyze Finite difference methods for diffusion							
CO3	Analyze Finite volume method for Convective diffusion							
CO4	CO4 Analyze Flow field problems							
CO5	CO5 Apply the fundamental concepts on fluid flow and heat flow							
	REFERENCES							
 Gho Publ Vers finit Anil 2003 Anil Chu Gho Pata 2004 	 shdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill lishing Company Ltd., 2017. steeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The e volume Method", Pearson Education Ltd., Second Edition, 2007. I W. Date, "Introduction to Computational Fluid Dynamics" Cambridge University Press, 5. ng, T.J. "Computational Fluid Dynamics", Cambridge University, Press, 2002. shdastidar P.S., "Heat Transfer", Oxford University Press, 2005. nkar, S.V. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, 4. 							

COURSE CODE	COURSE NAME	L	Т	Р	C				
191ME733	DESIGN OF JIGS FIXTURES AND PRESS TOOLS	3	0	0	3				
	(Use of PSG Design Data Book is permitted)								
COURSE OBJECTIVES									
To unTo ga	 To understand the functions and design principles of Jigs, fixtures and press tools To gain proficiency in the development of required views of the final design 								
UNIT 1 LOCATING AND CLAMPING PRINCIPLES									
Objectives of of location – Mechanical a buttons – Tol	Objectives of tool design- Function and advantages of Jigs and fixtures – Basic elements – principles of location – Locating methods and devices – Redundant Location – Principles of clamping – Mechanical actuation – pneumatic and hydraulic actuation Standard parts – Drill bushes and Jig buttons – Tolerances and materials used.								
UNIT 2	JIGS AND FIXTURES								
Design and d Channel, latc boring, broac fixturing syst	Design and development of jigs and fixtures for given component- Types of Jigs – Post, Turnover, Channel, latch, box, pot, angular post jigs – Indexing jigs – General principles of milling, Lathe, boring, broaching and grinding fixtures – Assembly, Inspection and Welding fixtures – Modular fixturing systems- Quick change fixtures.								
UNIT 3	PRESS WORKING TERMINOLOGIES AND ELEMENTS CUTTING DIES	5 OF	יז		9				
Press Workin press capacit Materials – C set, guide pla of four standa	Press Working Terminologies - operations – Types of presses – press accessories – Computation of press capacity – Strip layout – Material Utilization – Shearing action – Clearances – Press Work Materials – Center of pressure- Design of various elements of dies – Die Block – Punch holder, Die set, guide plates – Stops – Strippers – Pilots – Selection of Standard parts – Design and preparation of four standard views of simple blanking, piercing, compound and progressive dies.								
UNIT 4	UNIT 4 BENDING AND DRAWING DIES								
Difference be Bending dies Ejectors – Va ironing – Des dies – Blank o dies.	Difference between bending and drawing – Blank development for above operations – Types of Bending dies – Press capacity – Spring back – knockouts – direct and indirect – pressure pads – Ejectors – Variables affecting Metal flow in drawing operations – draw die inserts – draw beads- ironing – Design and development of bending, forming, drawing, reverse redrawing and combination dies – Blank development for axisymmetric, rectangular and elliptic parts – Single and double action dies.								
UNIT 5	FORMING TECHNIQUES AND EVALUATION			9					

Bulging, Swaging, Embossing, coining, curling, hole flanging, shaving and sizing, assembly, fine Blanking dies – recent trends in tool design- computer Aids for sheet metal forming Analysis – basic introduction - tooling for numerically controlled machines- setup reduction for work holding – Single minute exchange of dies – Poka Yoke.

Total: 45 Periods

COURSE OUTCOMES

Upon the completion of this course the students will be able to,

CO2 Design and develop jigs and fixtures for given componentDiscuss the press working terminologies and elements of cutting dies

CO3 Distinguish between bending and drawing dies

CO4 Discuss the different types of forming techniques

CO5 Summarize the different methods of Locating Jigs and Fixtures and Clamping principles

REFERENCES

1. Joshi, P.H. "Jigs and Fixtures", Second Edition, TMH Publishing Co., Ltd., New Delhi, 2010.

2. ASTME Fundamentals of Tool Design Prentice Hall of India.

3. Donaldson, Lecain and Goold "Tool Design", 5th Edition, Tata McGraw Hill, 2017.

4. Hoffman "Jigs and Fixture Design", Thomson Delmar Learning, Singapore, 2004.

5. Venkataraman. K., "Design of Jigs Fixtures & Press Tools", Tata McGraw Hill, New Delhi, 2005.

COUR COD	SE E	COURSE NAME	L	Т	Р	С			
191ME	734	MECHATRONICS	3	0	0	3			
COURSE OBJECTIVES									
• To impart knowledge about the elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation.									
UNIT	1	INTRODUCTION			9				
Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance sensors – Strain gauges – Eddy current sensor – Hall effect sensor – Temperature sensors – Light									
UNIT	UNIT 2 MICROPROCESSOR AND MICROCONTROLLER				9				
Introduc Timing	Introduction – Architecture of 8085 – Pin Configuration – Addressing Modes –Instruction set, Timing diagram of 8085 – Concepts of 8051 microcontroller – Block diagram,.								
UNIT	UNIT 3 PROGRAMMABLE PERIPHERAL INTERFACE			9					
Introduc interface	ction - e, Ter	- Architecture of 8255, Keyboard interfacing, LED display –interfacing, nperature Control – Stepper Motor Control – Traffic Control interface.	AD	C ar	nd D.	AC			
UNIT	4	PROGRAMMABLE LOGIC CONTROLLER			9				
Introduc counters	ction - s and	- Basic structure – Input and output processing – Programming – Mnem internal relays – Data handling – Selection of PLC.	ionic	cs –	Time	ers,			
UNIT	5	ACTUATORS AND MECHATRONIC SYSTEM DESIGN							
Types of Stepper and Servo motors – Construction – Working Principle – Advantages and Disadvantages. Design process-stages of design process – Traditional and Mechatronics design concepts – Case studies of Mechatronics systems – Pick and place Robot – Engine Management system – Automatic car park barrier.									
Total: 45 Periods									
Upon th	ie con	COURSE OUTCOMES							
CO1	Disc Com techr	uss the interdisciplinary applications of Electronics, Electrical, Mechan puter Systems for the Control of Mechanical, Electronic Systems and s hology	ical ensc	and or					

CO2	Discuss the architecture of Microprocessor and Microcontroller, Pin Diagram, Addressing Modes of Microprocessor and Microcontroller						
CO3	Discuss Programmable Peripheral Interface, Architecture of 8255 PPI, and various device interfacing						
CO4 Explain the architecture, programming and application of programmable logic controllers to problems and challenges in the areas of Mechatronic engineering.							
CO5 Discuss various Actuators and Mechatronics system using the knowledge and skills acquired through the course and also from the given case studies							
	REFERENCES						
 Bol Arc Bra Cla Cla Cla Dev com Kri Mio 	ton, "Mechatronics", Prentice Hall, 2008 2. Ramesh S Gaonkar, "Microprocessor chitecture, Programming, and Applications with the 8085", 5th Edition, Prentice Hall, 2008. Idley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993. rence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013. vadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing npany, 2007. shna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2007.						

COURSE CODE	COURSE NAME	L	Т	Р	С			
191ME735	SUPPLY CHAIN MANAGEMENT	3	0	0	3			
	COURSE OBJECTIVES							
• To p	rovide an insight on the fundamentals of supply chain networks, tools ar	ıd te	chni	ques	5.			
UNIT 1	INTRODUCTION			9				
Role of Logistics and Supply chain Management: Scope and Importance- Evolution of Supply Chain Decision Phases in Supply Chain - Competitive and Supply chain Strategies – Drivers of Supply Chain Performance and Obstacles.								
UNIT 2 SUPPLY CHAIN NETWORK DESIGN								
Role of Distribution in Supply Chain – Factors influencing Distribution network design – Design options for Distribution Network Distribution Network in Practice-Role of network Design in Supply Chain – Framework for network Decisions.								
UNIT 3 LOGISTICS IN SUPPLY CHAIN								
Role of tran transportation	sportation in supply chain – factors affecting transportations decision – D on network – Tailored transportation –Routing and scheduling in transpo	esig rtati	n op on.	tion	for			
UNIT 4	SOURCING AND COORDINATION IN SUPPLY CHAIN			9				
Role of sou sourcing pla ordination i chain.	Role of sourcing supply chain supplier selection assessment and contracts- Design collaboration sourcing planning and analysis - supply chain co-ordination - Bull whip effect – Effect of lack of co-ordination in supply chain and obstacles – Building strategic partnerships and trust within a supply chain.							
UNIT 5	SUPPLY CHAIN AND INFORMATION TECHNOLOGY			9				
The role IT in supply chain- The supply chain IT frame work Customer Relationship Management – Internal supply chain management – supplier relationship management – future of IT in supply chain – E-Business in supply chain.								
Total: 45 Periods								
	COURSE OUTCOMES							
Upon the co	mpletion of this course the students will be able to,							
CO1 Des	cribe the basics of Logistics and Supply chain Management							

CO2	Apply the concepts of supply chain networks and functions						
CO3	Explain the role of Logistics in supply chain networks and functions						
CO4	Explain the different ways of sourcing and coordination in supply chain						
CO5	CO5 Explain the role of Information Technology in Supply chain Management						
	REFERENCES						
 Sunil Chopra, Peter Meindl and Kalra, "Supply Chain Management, Strategy, Planning, and Operation", Pearson Education, 2010. Jeremy F.Shapiro, "Modeling the Supply Chain", Thomson Duxbury, 2002. Srinivasan G.S, "Quantitative models in Operations and Supply Chain Management, PHI, 201 David J.Bloomberg , Stephen Lemay and Joe B.Hanna, "Logistics", PHI 2002. James B.Ayers, "Handbook of Supply Chain Management", St.Lucle press, 2000. 							

COUR COD	RSE DE	COURSE NAME	L	Т	Р	C			
191ME	E 736	INDUSTRIAL SAFETY ENGINEERING	3	0	0	3			
COURSE OBJECTIVES									
• To i prac	impar ctices.	t the students knowledge on safety engineering fundamentals and safe	ty n	nana	gem	ent			
UNIT	Г 1	INTRODUCTION			9				
Evolution of modern safety concepts – Fire prevention – Mechanical hazards – Boilers, Pressure vessels, Electrical Exposure.									
UNIT	Г 2	CHEMICAL HAZARDS			9				
Chemical exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Chemical Fire Hazards, Industrial Toxicology.									
UNIT 3 ENVIRONMENTAL CONTROL					9				
Industri Control	Industrial Health Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.								
UNIT	Г 4	HAZARD ANALYSIS			9				
System Analysi	Safe is (FM	ty Analysis –Techniques – Fault Tree Analysis (FTA), Failure Moo IEA), HAZOP analysis and Risk Assessment	les :	and	Effe	cts			
UNIT	Г 5	SAFETY REGULATIONS		9					
Explosi control, safety –	ons – , haza - case	- Disaster management – Pandemic related standards, OSHA standards rd control, Safety education and training - Factories Act, Safety regustudies.	rds, Ilatio	cata	stroj Prod	ohe uct			
		Τα	tal:	45]	Perio	ods			
		COURSE OUTCOMES							
Upon th	ne con	npletion of this course the students will be able to,							
CO1	Expl	ain modern safety concepts for engineering operations.							
CO2	Iden	tify and prevent chemical hazards through analysis.							
CO3	Iden	tify and prevent environmental hazards through analysis.							
CO4	Iden	Identify and prevent mechanical hazard through analysis.							

CO5	Apply proper	safety tec	hniques on	safety eng	gineering and	l management
	11 / 1 1	2	1		0 0	0

REFERENCES

- 1. John V.Grimaldi, "Safety Management", AITBS Publishers, 2003.
- 2. Safety Manual, "EDEL Engineering Consultancy", 2000.

Т

3. David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and Managers, Pearson Education Ltd., 2005.

COURSE CODE	COURSE NAME	L	Т	Р	С			
191ME737	NOISE VIBRATION AND HARSHNESS	3	0	0	3			
	COURSE OBJECTIVES							
• To impart the student an understanding of the sources of noise vibration and harshness in automobiles and make design modifications to reduce the vibration and elimination of noise and harshness to improve the life of the components								
UNIT 1	BASICS OF VIBRATION			9				
Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non linear vibration, response of damped and undamped systems under harmonic force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.								
UNIT 2	BASICS OF NOISE			9				
Introduction, averaging de measurement	Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.							
UNIT 3	AUTOMOTIVE NOISE SOURCES		9)				
Noise Chara assessment o contributed n	cteristics of engines, engine overall noise levels, assessment of cor f mechanical noise, engine radiated noise, intake and exhaust noise, en oise, transmission noise, aerodynamic noise, tire noise, brake noise.	nbus ngin	stior e ne	n noi cess	ise, ary			
UNIT 4	CONTROL TECHNIQUES		9					
Vibration isc dynamic forc the mass elas	plation, tuned absorbers, un-tuned viscous dampers, damping treatme res generated by IC engines, engine isolation, crank shaft damping, mo tic model shock absorbers.	nts, odal	app ana	licat lysis	ion s of			
UNIT 5	METHODS FOR NOISE CONTROL			9				
Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers								
	Το	tal:	45]	Perio	ods			
	COURSE OUTCOMES							
Upon the con	npletion of this course the students will be able to,							
CO1	Summarize the basics of vibration							
---	--	--	--	--				
CO2	Summarize the basics of noise							
CO3	Explain the Sources of Automotive noise							
CO4	Discuss the Control techniques for vibration							
CO5	Describe the sources and control of noise							
	REFERENCES							
1. Si	ngiresu S.Rao, "Mechanical Vibrations", 6th Edition, Pearson Education, 2016.							
2. B Ce	2. Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1 stEditon, Cengage Learning, 2009							
3. B	3. Benson H. Tongue, "Principles of Vibrations", 2 nd Edition, Oxford University, 2007							
4. Bernard Challen and RodicaBaranescu - "Diesel Engine Reference Book", Second Edition, SAE International, 1999.								
5. Da E	5. David Bies and Colin Hansen, "Engineering Noise Control – Theory and Practice",4th Edition E and FN Spon, Taylore & Francise e-Library, 2009							
6. G1	over. G.T., "Mechanical Vibrations", Nem Chand and Bros., 2009							

COURSE CODE	COURSE NAME	L	Т	Р	С			
191ME738	NON DESTRUCTIVE TESTING AND EVALUATION	3	0	0	3			
COURSE OBJECTIVES								
• To stu and th	• To study and understand the various Non Destructive Evaluation and Testing methods, theory and their industrial applications.							
UNIT 1	OVERVIEW OF NDT			9				
NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT, Visual inspection – Unaided and aided.								
UNIT 2	SURFACE NDE METHODS			9				
Liquid Penet magnetism. ty methods, Test inspection ma	Liquid Penetrant Testing - Principles, Interpretation and evaluation of demagnetization, Residual magnetism. types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, test indications							
UNIT 3	THERMOGRAPHY AND EDDY CURRENT TESTING (ET)			9				
Thermograph crystals, Adv methods, app Eddy current advantages, L	y-Principles, Contact and non contact inspection methods, Techniques for antages and limitation - infrared radiation and infrared detectors, Instru- lications. Eddy Current Testing-Generation of eddy currents, Properties of t sensing elements, Probes, Instrumentation, Types of arrangement imitations, Interpretation/Evaluation.	app amer of ed	lyin itatio dy c ppli	g liq ons a urrei catio	uid and nts, ons,			
UNIT 4	ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (A)	E)		9				
Ultrasonic Te angle beam, i Time of Fligh	esting-Principle, Transducers, transmission and pulse-echo method, str nstrumentation, data representation, A/Scan, B-scan, C-scan. Phased An at Diffraction. Acoustic Emission Technique – Principle, AE parameters,	aigh ray App	t be Ultr licat	am a asou ions	and nd,			
UNIT 5	RADIOGRAPHY (RT)			9				
Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, films graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xerox-Radiography, Computed Radiography, Computed Tomography								
	To	otal:	45	Perio	ods			
	COURSE OUTCOMES							

Upon the completion of this course the students will be able to,						
CO1	Explain the fundamental concepts of NDT					
CO2	Discuss the different methods of NDE					
CO3	Explain the concept of Thermography and Eddy current testing					
CO4	Explain the concept of Ultrasonic Testing and Acoustic Emission					
CO5 Explain the concept of Radiography						
REFERENCES						
	REFERENCES					
1. Ва Ри	REFERENCES aldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa ablishing House, 2014					
1. Ba Pu 2. Ra Pu	REFERENCES aldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa ablishing House, 2014 avi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International ablishers, 2010					
1. Ba Pu 2. Ra Pu 3. Cl	REFERENCES aldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa ablishing House, 2014 avi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International ablishers, 2010 harles, J. Hellier, "Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.					

COUF COE	RSE DE	COURSE NAME	L	Т	Р	C	
191MF	E 739	OPERATIONS RESEARCH	3	0	0	3	
COURSE OBJECTIVES							
• To provide knowledge and training in using optimization techniques under limited resources for the engineering and business problems							
UNIT	Γ1	LINEAR MODELS			9		
The ph algorith	ase of im – E	f an operation research study – Linear programming – Graphical me Duality formulation – Sensitivity analysis.	etho	d– S	Simp	lex	
UNIT	Г 2	TRANSPORTATION MODELS AND NETWORK MODELS			9		
Transpo – Minin Critical	Transportation Assignment Models – Traveling Salesman problem-Networks models – Shortest route – Minimal spanning tree – Maximum flow models – Project network – CPM and PERT networks – Critical path scheduling – Sequencing models.						
UNIT	Г З	INVENTORY MODELS			9		
Invento invento	ory mo ry mo	odels – Economic order quantity models – Quantity discount mode dels – Multi product models – Inventory control models in practice.	sls –	Sto	ocha	stic	
UNIT	Г 4	QUEUEING MODELS			9		
Queuein server r Simulat	ng mo nodel tion.	dels - Queueing systems and structures – Notation parameter – Single s s – Poisson input – Exponential service – Constant rate service – Infin	serve ite p	er an opu	d m latio	ulti n —	
UNIT	Г 5	DECISION MODELS		9			
Decisio solutior Econon	on moo n– Lir nic life	dels – Game theory – Two person zero sum games – Graphical solution – Replacement models – Models based o e– Single / Multi variable search technique – Dynamic Programming – S	ition n se Simp	- Al rvic le Pi	gebr e lif roble	aic e – em.	
		Τα	otal:	45]	Perio	ods	
		COURSE OUTCOMES					
Upon th	ne con	npletion of this course the students will be able to,					
CO1	Appl	y the linear models for use in engineering and business problems					
CO2	Appl prob	y transportation models and network models for use in engineerin lems	g ar	nd b	usin	ess	

CO3	Apply the inventory models for use in engineering and business problems				
CO4	Apply the queuing models for use in engineering and business problems				
CO5	Apply the decision models for use in engineering and business problems				
	REFERENCES				
1. Hilli	er and Libeberman, "Operations Research", Holden Day, 2005				
2. Taha	2. Taha H.A., "Operations Research", Sixth Edition, Prentice Hall of India, 2003.				
3. Baza	3. Bazara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 2009.				
4. Budi	nick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.				
5. Phili	p D.T. and Ravindran A., "Operations Research", John Wiley, 1992.				

Г

5. Philip D.T. and Ravindran A., "Operations Research", John Wiley, 1992.
 6. Shennoy G.V. and Srivastava U.K., "Operation Research for Management", Wiley Eastern, 1994.

COUDSE							
CODE	COURSE NAME	L	Τ	Р	С		
191ME7310	PRODUCT DESIGN AND DEVELOPMENT	3	0	0	3		
COURSE OBJECTIVES							
• The student will be introduced to concepts of product design and development through proper material selection and processing methods.							
UNIT 1	DESIGN PROCESS		9				
The design process - Morphology of Design - Design drawings - Computer Aided Engineering - Designing of standards - Concurrent Engineering - Product life cycle - Technological Forecasting - Market Identification - Competition Bench marking - Systems Engineering - Life Cycle Engineering - Human Factors in Design - Industrial Design.							
UNIT 2	DESIGN METHODS			9			
Creativity an theory - Emb Modeling - F Structural and	Creativity and Problem Solving - Product Design Specifications - Conceptual design - Decision theory - Embodiment Design - Detail Design - Mathematical Modeling - Simulation - Geometric Modeling - Finite Element Modeling - Optimization - Search Methods - Geometric Programming - Structural and Shape Optimization.						
UNIT 3	INDUSTRIAL DESIGN AND DESIGN FOR ENVIRONMENT	•		9			
Industrial De Design - In Environment	sign - Need for Industrial Design - Impact of Industrial Design - Importa dustrial Design Process - Design for Environment - Environme ally friendly materials - Design for Environment Process	nce ntal	ofIn im	dustı pacts	rial s -		
UNIT 4	MATERIAL SELECTION PROCESSING AND DESIGN			9			
Material selection Process - Economics - Cost Vs Performance - Weighted property Index - Value Analysis - Role of Processing and Design - Classification of Manufacturing Process - Design for Manufacture - Design for Assembly - Design for castings, Forging, Metal Forming, Machining and Welding - Residual stresses - Fatigue, Fracture and Failure.							
UNIT 5	ENGINEERING STATISTICS AND RELIABILITY			9			
Probability - Distributions - Test of Hypothesis - Design of Experiments - Reliability Theory - Design of Reliability - Reliability centered Maintenance. Quality Engineering – Total Quality Concept - Quality Assurance - Statistics Process Control - Taguchi Methods - Robust Design - Failure Model Effect Analysis.							
	То	tal:	45 I	Perio	ods		
	COURSE OUTCOMES						
Upon the con	npletion of this course the students will be able to,						
	150						

C01	Apply the design process for product development.				
CO2	2 Apply the design methods for product development.				
CO3	Apply the basics of industrial engineering and design for environment.				
CO4	Apply the engineering principles for material selection processing and design.				
CO5	CO5 Apply concepts of engineering statistics and reliability for design and development				
REFERENCES					
	REFERENCES				
1. I H	REFERENCES Dieter George E., "Engineering Design – A Materials and Processing Approach", McGraw Iill, International Edition Mechanical Engg., Series ,1991.				
1. I H 2. E	REFERENCES Dieter George E., "Engineering Design – A Materials and Processing Approach", McGraw Iill, International Edition Mechanical Engg ., Series ,1991. Karl t. Ulrich and Steven d Eppinger "Product Design and Development" ,McGraw Hill, dition 2000.				
1. I H 2. E 3. H	REFERENCES Dieter George E., "Engineering Design – A Materials and Processing Approach", McGraw Iill, International Edition Mechanical Engg ., Series ,1991. Karl t. Ulrich and Steven d Eppinger "Product Design and Development" ,McGraw Hill, dition 2000. alh .G. and Beitz .W., "Engineering Design ", Springer - Verlag , NY. 1985.				
1. I H 2. 1 H 3. H 4. H	REFERENCES Dieter George E., "Engineering Design – A Materials and Processing Approach", McGraw Iill, International Edition Mechanical Engg ., Series ,1991. Karl t. Ulrich and Steven d Eppinger "Product Design and Development" ,McGraw Hill, dition 2000. alh .G. and Beitz .W., "Engineering Design ", Springer - Verlag , NY. 1985. ay .M.S., " Elements of Engg. Design ", Prentice Hall Inc . 1985.				

COURSE CODE	COURSE NAME	L	Т	Р	C			
191ME831	ENGINEERING ECONOMICS	3	0	0	3			
	(Use of Interest tables is permitted)							
	COURSE OBJECTIVES							
• To enable and to lea	• To enable students to understand the fundamental economic concepts applicable to engineering and to learn the techniques.							
• To interp productiv	pret the intricacies of economic concepts resulting in enhanced perity.	erfor	man	ice a	ınd			
UNIT 1	INTRODUCTION TO INDUSTRIAL ECONOMICS			9				
Nature and s Supply- Elas Opportunity for product D	cope of Economics - Importance of study of Economics for Engineer ticity, cost concepts– Element of costs, Marginal cost, Marginal Reve cost, Break-even analysis - V ratio, Elementary economic Analysis – M Design selection for a product, Process planning.	rs. D nue, ateri	ema Sur ial se	ind a nk co elect	and ost, ion			
UNIT 2	VALUE ENGINEERING			9				
Make or buy formulae and Single payme payment Pres annual equive	decision, Value engineering – Function, aims, Value engineering pro I their applications –Time value of money, Single payment compound ent present worth factor, Equal payment series sinking fund factor, Equal sent worth factor- equal payment series capital recovery factor - Uniform alent factor, Effective interest rate, Examples in all the methods.	cedu am pay n gra	ure. ount mer dier	Inter fact it ser it ser	rest tor, ries ries			
UNIT 3	CASH FLOW			9				
Methods of diagram), Fu diagram), An flow diagram	comparison of alternatives – present worth method (Revenue domin ture worth method (Revenue dominated cash flow diagram, cost domin nual equivalent method (Revenue dominated cash flow diagram, cost a), rate of return method, Examples in all the methods.	ated nate dom	l cas d cas linat	sh fl sh fl ed ca	ow ow ash			
UNIT 4	REPLACEMENT AND RISK ANALYSIS			9				
Items deteriorating with time and items that fail completely, not accounting for time value of money and with accounting for time value of money, replacement policy for new and old machine with infinite horizon, group replacement - Risk in economic analysis, measuring risk investment, risk profiles, decision trees, formulation of discounted decision tree, simulation.								
UNIT 5	DEPRECIATION			9				
Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the years digits method of depreciation, sinking fund method of depreciation/ Annuity method of depreciation, service output method of depreciation-Evaluation of public								

alternatives- introduction, Examples, Inflation adjusted decisions – procedure to adjust inflation, Examples on comparison of alternatives and determination of economic life of asset.

Total: 45 Periods

COURSE OUTCOMES					
Upon	the completion of this course the students will be able to,				
CO1	Apply the basics of economics and cost analysis to engineering and take economically sound decisions				
CO2	Explain the fundamentals of value engineering				
CO3	Discuss various case flow Methods with comparison of alternatives.				
CO4	Estimate various financial possibilities in replacement and risk Analysis				
CO5	Summarize the different types of techniques in ddepreciation methods				
REFERENCES					
1. P	anneerSelvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001				
2. Ja	mes L Riggs, Engineering Economics, Tata McGraw Hill Book Co., New Delhi, 2004				
3. C	han S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2011.				

4. Zahid A khan: Engineering Economy, "Engineering Economy", Dorling Kindersley, 2012.

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME832	INTERNET OF THINGS FOR MECHANICAL ENGINEERING	3	0	0	3		
	COURSE OBJECTIVES						
• To pr	esent a problem oriented in depth knowledge of IoT and Smart Manufa	cturi	ing.				
To ad	dress the underlying concepts and methods behind IoT and Smart Man	ufac	turir	ng.			
UNIT 1	THE INTERNET OF THINGS			9			
An overview Prototyping - closed Source	v; Design Principles for Connected Devices; Internet Principles. - Costs versus ease of prototyping, prototyping andProduction, Ope e.	Thin n so	king ource	g ab e vei	out		
UNIT 2	PROTOTYPING EMBEDDED DEVICES			9			
Electronics, I Imp and oth Reactions, O	Electronics, Embedded Computing Basics, Arduino/Raspberry Pi/ BeagleBone Black/ etc., Electric Imp and other notable platforms, Prototyping online Components – API Writing,Real Time Reactions, Other Protocols.						
UNIT 3	INTERNET OF THINGS PRIVACY, SECURITY AND GOVERNANCE			9			
Introduction, IoT-Data-Pla Aggregation	Overview of Governance, Privacy and Security Issues, Security, Privat tforms for Smart Cities, First Steps Towards aSecure Platform, Smartie for the IoT in Smart Cities.	acy a App	and broad	Trus ch. E	t in Data		
UNIT 4	INTRODUCTION TO SMART MANUFACTURING			9			
Concept of conventional Driven and Ir Sustainable F	Concept of smart manufacturing, working of smart manufacturing, difference from conventional/legacy manufacturing-Smart Manufacturing Processes- ThreeDimensions: Demand Driven and Integrated Supply Chains, Dynamically OptimizedManufacturing Enterprises, Real Time, Sustainable Resource Management.						
UNIT 5	SMART DESIGN AND FABRICATION			9			
Smart Design/Fabrication - Digital Tools, Product Representation andExchange Technologies and Standards,Additive Manufacturing Systems and Standards.Mass Customization, Smart Machine Tools, Robotics and Automation (perception, manipulation,mobility, autonomy), Smart Perception – Sensor networks and Devices.							
	Τα	stal:	45]	Perio	ods		
	COURSE OUTCOMES						

Upon the completion of this course the students will be able to,						
CO1	Identify different areas of IOT and Smart Manufacturing					
CO2	Develop simple prototypes incorporating internet of things					
CO3	Apply the principles of privacy in internet of things aapplications					
CO4	Identify the smart manufacturing applications for all the areas in day to day life					
CO5	Identify process sequence for smart design and fabrication in all the areas in day to day life					
	REFERENCES					
1. A.	McEwen and H. Cassimally, Designing the Internet of Things, 1st edition, Wiley, 2013.					
2. N. Ste	 N. Vengurlekar and P. Bagal, Database Cloud Storage: The Essential Guide toOracle Automatic Storage Management, 1st edition, McGraw-Hill Education, 2013. 					
3. M M	Kuniavsky, Smart Things: Ubiquitous Computing User Experience Design, 1 st edition, organ Kaufmann, 2010.					

COURSE CODE	COURSE NAME	L	Т	Р	C			
191ME833	MAINTENANCE ENGINEERING	3	0	0	3			
	COURSE OBJECTIVES							
• To enable for the su	• To enable the student to understand the principles, functions and practices adapted in industry for the successful management of maintenance activities.							
• To explai monitorir	n the different maintenance categories like preventive maintenance, con ng and repair of machine elements.	nditi	on					
• To illustr	ate some of the simple instruments used for condition monitoring in inc	lustr	у					
UNIT 1	PRINCIPLES AND PRACTICES OF MAINTENANCE PLANN	INC	די	9)			
Basic Princip activity– Im availability – Maintenance	Basic Principles of maintenance planning – Objectives and principles of planned maintenance activity– Importance and benefits of sound Maintenance systems – Reliability and machine availability –MTBF, MTTR and MWT – Factors of availability – Maintenance organization – Maintenance economics.							
UNIT 2	MAINTENANCE POLICIES – PREVENTIVE MAINTENANC	E		9				
Maintenance maintenance Maintenance	categories – Comparative merits of each category – Preventive schedules, repair cycle - Principles and methods of lubrication – T philosophy - Makigami Analysis.	e m otal	aint Pro	enar oduct	ice, tive			
UNIT 3	CONDITION MONITORING			9				
Condition M and offload t tapes – Pistol	onitoring – Cost comparison with and without condition monitoring – testing – Methods and instruments for condition monitoring – Tempe thermometers – wear-debris Analysis.	On- eratu	load re s	l test ensit	ing ive			
UNIT 4	REPAIR METHODS FOR BASIC MACHINE ELEMENTS			9				
Repair methor Failures and	ods for beds, slide ways, spindles, gears, lead screws and bearings – Fa their development – Logical fault location methods – Sequential fault lo	ilur ocati	e an on.	alysi	is –			
UNIT 5	REPAIR METHODS FOR MATERIAL HANDLING EQUIPM	IEN	Т		9			
Repair methods for Material handling equipment - Equipment records –Job order systems -Use of computers in maintenance. Machines for maintenance- Diagnostic modules in modern day maintenance								
	Τα	tal:	45]	Peri	ods			
	COURSE OUTCOMES							

Upon th	ne completion of this course the students will be able to,					
CO1	Implement the maintenance function and different practices in industries for the successful management of maintenance activities					
CO2	Explain the Maintenance policies and preventive maintenance policies in industry applications.					
CO3	Analysis various Condition monitoring techniques and its applications					
CO4	Explain the various repairing methods in machine elements					
CO5	Apply the various repairing methods in material handling equipment					
	REFERENCES					
1. Sr	ivastava S.K., "Industrial Maintenance Management", S. Chand and Co., 1981					
2. ve 200	2. venkataraman .K, "Maintancence Engineering and Management", PHI Learning, Pvt. Ltd., 2007					
3. Bh	attacharya S.N., "Installation, Servicing and Maintenance", S. Chand and Co., 1995					
4. Wł	nite E.N., "Maintenance Planning", I Documentation, Gower Press, 1979.					
5. Da	vies, "Handbook of Condition Monitoring", Chapman & Hall, 1996.					

COURSE CODE	COURSE NAME	L	Т	Р	С				
191ME834	PRODUCTION PLANNING AND CONTROL	3	0	0	3				
COURSE OBJECTIVES									
• To un as wo	• To understand the various components and functions of production planning and control such as work study, product planning, process planning, production scheduling, Inventory Control								
• To kr Resor	• To know the recent trends like manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP)								
UNIT 1	INTRODUCTION								
Objectives a production- j aspects- Op consideration a new design	Objectives and benefits of planning and control-Functions of production control-Types of production- job- batch and continuous-Product development and design-Marketing aspect Functional aspects- Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration- Standardization, Simplification & specialization- Break even analysis-Economics of a new design.								
UNIT 2	WORK STUDY		9						
Method stud Implementati measurement Predetermine	Method study, basic procedure-Selection-Recording of process - Critical analysis, Development Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data Predetermined motion time standards.								
UNIT 3	PRODUCT PLANNING AND PROCESS PLANNING			9					
Product plan product plar planning- Ste balancing- A	Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi product system.								
UNIT 4	PRODUCTION SCHEDULING			9					
Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance – Flow production scheduling- Batch production scheduling-Product sequencing – Production Control systems Periodic batch control-Material requirement planning kanban – Dispatching-Progress reporting and expediting- Manufacturing lead time-Techniques for aligning completion times and due dates.									
UNIT 5	INVENTORY CONTROL AND RECENT TRENDS IN PPC			9					
Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic									

lot size- ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems- elements of just in time systems-Fundamentals of MRP II and ERP.

Total: 45 Periods

	COURSE OUTCOMES						
Upon the	Upon the completion of this course the students will be able to,						
CO1	CO1 Select a suitable types of production for a given type of product						
CO2	Prepare work study for the product development						
CO3	Prepare production planning for a given type of product						
CO4	Prepare production scheduling for a given type of product						
CO5	CO5 Apply recent concepts in production planning and control and MRP II and ERP						
	REFERENCES						
1. Jar ma	1. James. B. Dilworth,"Operations management – Design, Planning and Control for manufacturing and services" McGraw Hill International edition 1992.						
2. Ma	2. Martand Telsang, "Industrial Engineering and Production Management", First edition, S.						
Ch	and and Company, 2000. ary S.N. "Theory and Problems in Production & Operations Management" TMH 1995						
4 Elv	wood S Buffa and Rakesh K Sarin "Modern Production / Operations Management" 8th						
Ed	ition John Wiley and Sons, 2000.						

COURSE CODE	COURSE NAME	L	Т	Р	С		
191ME835	ROBOTICS AND AUTOMATION	3	0	0	3		
	COURSE OBJECTIVES						
• To un	derstand the functions of the basic components of a robot						
To stu	ady the use of various types of end of effectors and sensors						
UNIT 1	UNIT 1 FUNDAMENTALS OF ROBOT						
Robot - De Classification Parts and the robot (cobot)	finition - Robot Anatomy - Co ordinate Systems, Work Envelo 1- Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, P eir Functions-Need for Robots-Different Applications. Introduction t	ope ay L o Co	Typ .oad ollat	es a - Ro oorat	and bot ive		
UNIT 2	ROBOT DRIVE SYSTEMS			9			
Pneumatic I Stepper Moto Drives.	Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. ors, A.C. Servo Motors-Salient Features, Applications and Comparis	Servision	vo] of a	Moto ll th	ors, ese		
UNIT 3	ROBOT END EFFECTORS			9			
End Effecto Grippers, Va External Grip	rs-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grip cuum Grippers; Two Fingered and Three Fingered Grippers; Interna opers; Selection and Design Considerations.	pers al G	, M ripp	agne ers a	etic and		
UNIT 4	SENSORS FOR ROBOTS			9			
Requirement sensors - Pie Range Sensor Slip Sensors.	s of a sensor, Principles and Applications of the following types of se zo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Pe rs Touch Sensors ,binary Sensors., Analog Sensors, Wrist Sensors, Comp	enso ositi pliar	rs- I on S nce S	Posit Senso Senso	ion ors, ors,		
UNIT 5	MACHINE VISION FOR ROBOTS			9			
Camera, Frame Grabber, Sensing and Digitizing Image Data, Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications Inspection, Identification, Visual Serving and Navigation.							
	Τα	otal:	45]	Perio	ods		
	COURSE OUTCOMES						
Upon the completion of this course the students will be able to,							

CO1	Select a suitable types of production for a given type of product
CO2	Prepare work study for the product development
CO3	Prepare production planning for a given type of product
CO4	Prepare production scheduling for a given type of product
CO5	Apply recent concepts in production planning and control and MRP II and ERP
	REFERENCES
 Kla Apj Gro Hill 	fter R.D., Chmielewski T.A and Negin M., "Robotic Engineering - An Integrated proach", Prentice Hall, 2003. pover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw I, 2001

COURSE CODE	COURSE NAME	L	Т	P	С		
191ME541	ADVANCED MATERIALS	3	0	0	3		
	COURSE OBJECTIVES			<u>.</u>			
• To provenginee	• To provide overview of material properties and applications in the electrical and electronics engineering						
UNIT 1	IONIC CONDUCTION		9				
Review of def glasses, applic piezoelectric m	ect equilibrium and diffusion mechanism, theory of ionic conduction ation in sensors and batteries, conducting polymers and organic s paterials	, co semi	ndu con	ction ducto	in ors,		
UNIT 2	DIELECTRIC AND MAGNETIC MATERIALS			9			
Dielectric cons piezo, and f polypararnagne magnet and tra	Dielectric constant and polarization, polarization mechanism, linear and nonlinear dielectric, pyro- piezo, and ferroelectric properties, application magnetization diamagnetism paramagnetism, polypararnagnetism, ferro, antiferro, and ferri magnetism. Soft and hard magnet materials, permanent magnet and transformers						
UNIT 3	ELECTRONIC MATERIALS			9			
Electron dynar and gap, Deg application of Thermal condu	nics and concept of holes, conductivity in relation to band structure, dir enerate and non-degenerate semiconductor, intrinsic and extrinsic semiconductor, DC and AC conductivity of metals, Hall effect and Ma activity and specific heat of material, thermo power of metals.	rect a sem gnet	and icon ores	indin nduc sistar	ect tor, ice,		
UNIT 4	ELECTRONIC MATERIALS FOR INDUSTRY			9			
Carrier statistic CVD and, MB MaS device str empirical rule,	es in semiconductor, semiconductor materials purification, and crystals g E, Physical vapor deposition (sputtering, evaporation, etc), P-N juncti uctures, doping by implant and diffusion, ion implantation, patterning, e alloy design, very large sea integration (VLSI).	grow on, etchl	'th, Sch ithc	epita ottky ograp	xy, ⁄ & hy,		
UNIT 5	OPTICAL MATERIALS			9			
optical materials, electron-hole recombination, solid state LED's, Laser and IR-detector, band gap engineering, light interaction with materials—transparency, translucency, opacity, refraction and refractive index, reflection, absorption and transmission.							
	То	otal:	45	Peri	ods		
	COURSE OUTCOMES						
Upon the comp	pletion of this course the students will be able to,						

CO1	Apply the basic principles of ionic conduction						
CO2	Relate and differentiate dielectric and magnetic materials						
CO3	Identify suitable electronic materials for a practical applications						
CO4	Identify suitable electronic materials for a industrial applications						
CO5	CO5 Apply the principles of optical materials for practical applications						
	REFERENCES						
1. Wil Edi	1. Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, Revised Indian Edition 2014						
2. DR	2. DR Askeland, "The Science and Engineering of Materials" PWS Publishing, ".1994						
	Askeland, "The Science and Engineering of Materials" PWS Publishing, ".1994						
3. G.E Yor	Askeland, "The Science and Engineering of Materials" PWS Publishing, ".1994 E. D Dieter, George Ellwood, and David J. Bacon," Mechanical Metallurgy" Vol. 3., New rk: McGraw-hill, 1976.						

COUL	RSE DE	COURSE NAME	L	Т	Р	С		
191MI	E 542	DESIGN THINKING	3	0	0	3		
COURSE OBJECTIVES								
• To provide step by step in-depth understanding on various aspects of innovation, creativity and evolving business models to students.								
UNI	Г 1	INTRODUCTION TO DESIGN THINKING 9						
Introduc Brainsto Analytic	ction - orming cal Thi	Create Thinking - Generating Design Ideas - Lateral Thinking - Mind mapping - National Group Technique – Synectics - Develop hking.	– A men	nalo t of	ogies wor	3 – k -		
UNI	Г 2	EMPATHIZE PHASE			9			
Identify Deliver	ring a d ables fo	esign challenge- ways to conduct design research by observing and enga or the Empathy Stage-A framework for empathy in design.	ıging	3-				
UNI	Г 3	ANALYZE PHASE			9			
Use of e Descrip	empath tive and	y map, Organization of design concept and design methods, Engineering d prescriptive model, Design decisions and development of design.	g De	sign	-			
UNI	Г 4	IDEATION PHASE			9			
Steps in ideas, H Visualiz	Ideate Iow to j zation a	Phase, creative process and creative principles, Creativity techniques, I prototype, Prototype Phase, Lean Startup Method for Prototype Develop nd presentation techniques.	Evalu	uatio it,	on of			
UNI	Г 5	TEST PHASE			9			
Steps in conduct	test Ph a work	ase, Tips for interviews, Tips for surveys, Kano Model, Desirability Teasshop, Requirements for the space, Material requirements, Agility for De	sting esigr	g, wa 1 Th	iys to inkii	o ng.		
Total: 45 Periods								
		COURSE OUTCOMES						
Upon th	ne comp	oletion of this course the students will be able to,						
CO1	Apply	the basic techniques for design thinking						
CO2	Apply	the techniques for empathizing a design thinking						

CO3	Apply the techniques of design thinking for analysis					
CO4	Apply the techniques of design thinking for ideation					
CO5	Apply the techniques of design thinking for testing					
	REFERENCES					
1. Jo	ohn.R.Karsnitz, Stephen O'Brien and John P. Hutchinson, "Engineering Design", Cengage					
	learning (International edition) Second Edition, 2013.					
2. Y	2. Yousef Haik and Tamer M.Shahin, "Engineering Design Process", Cengage Learning, Second					
E	Edition, 2011.					
3. O	tto. K and Wood, K, Product Design, Pearson Education, 2001.					
1 D	ahl C and Baitz C. Engineering Dagion Springer 1006					

4. Pahl. G and Beitz. G, Engineering Design, Springer, 1996.

COUR COD	RSE DE	COURSE NAME	L	Т	Р	С	
191ME	 2543	ENERGY CONSERVATION AND MANAGEMENT	3	0	0	3	
COURSE OBJECTIVES							
• 7 b a	• To expose students to analysis the energy data of industries, carryout energy accounting and balancing, conduct energy audit and suggest methodologies for energy savings and utilize th available resources in optimal ways.						
UNIT	Г 1	INTRODUCTION			9		
Energy - Environ Methodo	- Powe mental plogy a	r – Past & Present scenario of World; National Energy consumption Dat aspects associated with energy utilization – Energy Auditing: Need, Ty nd Barriers. Role of Energy Managers. Instruments for energy auditing.	ta — pes,				
UNIT	Г 2	ELECTRICAL SYSTEMS			9		
Compon Power F Efficient of Encor	Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.					3, e	
UNII	Г З	THERMAL SYSTEMS			9		
Stoichio measure Insulator	metry, s. Stea rs& Re	Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation m: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Ste fractories.	and am	ence Utili	on izatio	on,	
UNII	Г 4	ENERGY CONSERVATION IN MAJOR UTILITIES			9		
Energy of Condition	conserv oning S	vation inPumps, Fans, Blowers, Compressed Air Systems, Refrigeration ystems – Cooling Towers – D.G. sets.	and	Air			
UNII	Г 5	ECONOMICS			9		
Energy I Cycle Co	Econor osting	nics – Discount Rate, Payback Period, Internal Rate of Return, Net Pres –ESCO concept .	ent '	Valu	e, L	ife	
	TOTAL: 45 PERIODS						
		COURSE OUTCOMES:					
Upon the	e comp	letion of this course the students will be able to,					
CO1	Relate balanc	the analyze the energy data of industries and carry out energy accountining	ng ai	nd			

CO2	Calculate the energy savings in electrical systems.				
CO3	Calculate the energy savings in thermal systems				
CO4	Carry out energy conservation procedures in major utilities				
CO5	CO5 Suggest methodologies for energy savings				
	REFERENCES				
1. Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power Government of India 2004					
	wer, Government of India, 2004.				
2. Wi	tte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation"				
2. Wi He	wer, Government of India, 2004. tte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" misphere Pub., Washington, 1988.				
 Wi He Ca 198 	wer, Government of India, 2004. tte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" misphere Pub., Washington, 1988. Ilaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 81.				

- Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
 Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987.

COURSE CODE	COURSE NAME	L	Т	Р	С			
191ME544	LEAN SIX SIGMA	3	0	0	3			
	COURSE OBJECTIVES							
To gain	• To gain insights about the importance of lean manufacturing and six sigma practices							
UNIT 1	LEAN & SIX SIGMA BACKGROUND AND FUNDAMENTA			9				
Historical Ove manufacturing sigma capabili (COPQ), Cost	Historical Overview – Definition of quality – What is six sigma -TQM and Six sigma – lean nanufacturing and six sigma- six sigma and process tolerance – Six sigma and cultural changes –six sigma capability – six sigma need assessments - implications of quality levels, Cost of Poor Quality (COPQ), Cost of Doing Nothing – assessment questions.							
UNIT 2	THE SCOPE OF TOOLS AND TECHNIQUES			9				
Tools for defin for measurem interrelationsh improvement -	Tools for definition – IPO diagram, SIPOC diagram, Flow diagram, CTQ Tree, Project Charter – Tools for measurement, Flow process charts, Process Capability Measurement, Tools for analysis – interrelationship diagram, overall equipment effectiveness, innovative problem solving – Tools for improvement — Tools for control.							
UNIT 3	SIX SIGMA METHODOLOGIES			9				
Design For Six FMEA proces Change Accelo	x Sigma (DFSS), Design For Six Sigma Method - Failure Mode Effect An s - Risk Priority Number (RPN)- Six Sigma and Leadership, committer eration Process (CAP)- Developing communication plan – Stakeholder	nalys ed le	sis(F eade	ME rshij	A), p –			
UNIT 4	SIX SIGMA IMPLEMENTATION AND CHALLENGES			9				
Tools for imp Deployment or close commun customer quali of six sigma –	Tools for implementation – Supplier Input Process Output Customer (SIPOC) – Quality Function Deployment or House of Quality (QFD) – alternative approach –implementation – leadership training, close communication system, project selection – project management and team –champion training – customer quality index – challenges – program failure, CPQ Vs six sigma, structure the deployment of six sigma – cultural challenge – customer/internal metrics							
UNIT 5	EVALUATION AND CONTINUOUS IMPROVEMENT METHODS			9				
Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates – continuous improvement – lean manufacturing – value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen – 5S.								
	TOTAL	: 45	PE	RIO	DS			

COURSE OUTCOMES				
Upon t	Upon the completion of this course the students will be able to,			
CO1	Relate the tools and techniques of lean sigma			
CO2	Apply tools and techniques of lean sigma to increaseproductivity			
CO3	CO3 Relate the techniques and methodologies of lean sigma			
CO4 Explain about the six sigma implementation and challenges				
CO5	Explain about evaluation and continuous improvement methods			
	REFERENCES			
 Michael L.George, David Rownalds, Bill Kastle, What is Lean Six Sigma, McGraw – Hill,2003 Thomas Pyzdek, The Six Sigma Handbook, McGraw-Hill,2000 Fred Soleimannejed, Six Sigma, Basic Steps and Implementation, AuthorHouse, 2004 Forrest W. Breyfogle, III, James M. Cupello, Becki Meadows, Managing Six Sigma: A Practical Guide to Applying, Assessing, and Implementing the Strategy That Yields Bottom-Line Success, John Wiley & Sons 2000 				
5. James P. Womack, Daniel T.Jones, Lean Thinking, Free Press Business, 2003				

COURSE CODE	COURSE NAME	L	Т	Р	С
191ME545	MATERIAL SCIENCE AND TECHNOLOGY	3	0	0	3
	COURSE OBJECTIVES				
• To pr ceramic charact	rovide comprehensive overview of metallic materials, engine c materials, polymers & composites, magnetic & electronic materials ar erization techniques	erin Id sy	g ma nthe	ateria esis a	als, and
UNIT 1	METALLIC MATERIALS, ENGINEERING MATERIALS		9		
Classification of – Brass, Bronz Bearing alloys,	of steel and cast Iron microstructure, properties and application. Copper at the and Cupronickel – Aluminium and Al-Cu – precipitation strengthen Mg-alloys, Ni-based super alloys and Titanium alloys.	nd co ing	oppe treat	er alle tmen	oys 1t –
UNIT 2	CERAMIC MATERIALS			9	
Crystal chemis by chemical an sintering theor	try — structure and bonding in materials, ceramic raw materials, producted physical mean, powder consolidation, addition in ceramic processing, cold and hot isostatic pressing, processing of electronic ceramic, sol-g	tion g, si gel p	of p nter roce	owd ing a ssing	lers and g.
UNIT 3	POLYMERS & COMPOSITES			9	
Polymers – typ various thermo PPO, PPS, PE properties and Metal Matrix a	Polymers – types of polymer, commodity and engineering polymers – Properties and applications of various thermosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE, Polymers – Urea and Phenol formaldehydes)- Engineering Ceramics - properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON –Composites-Classifications-Metal Matrix and FRP - Applications of Composites.				of AI, s - ons-
UNIT 4	MAGNETIC & ELECTRONIC MATERIALS			9	
Electrical, mag conductivity in Intrinsic and ex Hall effect and of meals. Ionic	Electrical, magnetic and dielectric properties of materials. Electron dynamics and concept of holes, conductivity in relation to band structure, direct and indirect band gap, Degenerate and non-degene. Intrinsic and extrinsic semiconductor, application of semiconductor, DC and AC conductivity of metals, Hall effect and Magnetoresistance, Thermal conductivity and specific heat of material, thermo power of meals. Ionic conduction-review of defect equilibrium and diffusion mechanism				
UNIT 5	CHARACTERIZATION TECHNIQUES			9	
Thermal analy (DSC), DTA, Therrnograving transform JR s	Thermal analysis tools, Thermometry and dilatometry, calorimetry, differential scanning calorimetry (DSC), DTA, Temperature modulates alorimetry, Thermomechanical analysis, DMA and DETA, Thermogravimetry, X-ray fluorescence, photoluminescence, UV photoelectron spectroscopy, Fourier transform JR spectroscopy, Laser Raman spectroscopy				
	TOTAL: 45 PERIODS				DS

COURSE OUTCOMES:					
Upon the	Upon the completion of this course the students will be able to,				
CO1	CO1 Select suitable metallic material based on application				
CO2	CO2 Compare the properties of ceramic materials and choose a suitable process for the ceramics				
CO3	CO3 Identify right plastic material as per the engineering purpose				
CO4	CO4 Analyse the effect of magnetism and conductivity property in electronic materials				
CO5	Identify the effect of the characterization technique on a given material				
	REFERENCES				
 Avner, S.H., "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1997. Raghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt. Ltd., 2015. Barsoum, W. M. "Fundamentals of Ceramics, IoP Publishing." 2003. Suryanarayana, 'Testing of Metallic Materials', Prentice Hall India, 1979. Rose R. M., Shepard, L. A., Wulff, J., 'Structure and Properties of Materials', Volume III, 4th Edition, John Wiley, 1984. 					

COURSE CODE	COURSE NAME	L	Т	Р	С	
191ME546	RENEWABLE ENERGY SOURCES	3	0	0	3	
	COURSE OBJECTIVES					
• To in sourc	roduce the new methodologies technologies for effective utilization of rees.	new	able	ene	rgy	
UNIT 1	INTRODUCTION		9			
World Energ Renewable E Applications	y Use – Reserves of Energy Resources – Environmental Aspects of Ener nergy Scenario in TamilNadu, India and around the World – Potentials – Economics of renewable energy systems.	rgy I – Ac	Utili hiev	satio veme	n – ents	
UNIT 2	SOLAR ENERGY			9		
Solar Radiati direct Therm Conversion -	Solar Radiation – Measurements of Solar Radiation - Flat Plate and Concentrating Collectors – Solar direct Thermal Applications – Solar thermal Power Generation - Fundamentals of Solar Photo Voltaic Conversion – Solar Cells – Solar PV Power Generation – Solar PV Applications.					
UNIT 3	WIND ENERGY			9		
Wind Data a Details of W	Wind Data and Energy Estimation – Types of Wind Energy Systems – Performance – Site Selection – Details of Wind Turbine Generator – Safety and Environmental Aspects					
UNIT 4 BIO ENERGY			9			
Biomass dire diesel – Coge	Biomass direct combustion – Biomass gasifiers – Biogas plants – Digesters – Ethanol production – Bio diesel – Cogeneration - Biomass Application, BiomassFeedstocks, Biomass to Biofuel Supply Chain					
UNIT 5	UNIT 5 OTHER RENEWABLE ENERGY SOURCES		9			
Tidal energy – Wave Energy – Open and Closed OTEC Cycles – Small Hydro-Geothermal Energy – Hydrogen and Storage - Fuel Cell Systems – Hybrid Systems, Greenhouse Gas and its effect on climate change.						
TOTAL: 45 PERIODS						
COURSE OUTCOMES: Upon the completion of this course the students will be able to,						
CO1 Iden	ify the ways for effective utilization of renewable energy sources.					
CO2 Rela	Relate and analyze the various solar energy based renewable energy generation.					

CO3	CO3 Relate and analyze the various wind energy based renewable energy generation				
CO4 Relate and analyze the various Bio-energy based renewable energy generation					
CO5	Identify the merits of new methodologies and technologies for renewable energy generation				
	REFERENCES				
 Rai Tw Suk Good U.F Tiw Put Free Joh Dav Chood Leas 	. G.D., "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 2011. idell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 2006. khatme. S.P., "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997. dfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, K., 1996. vari. G.N., Solar Energy – "Fundamentals Design, Modelling & Applications", Narosa blishing House, New Delhi, 2002. ris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK, 1990. nson Gary, L. "Wind Energy Systems", Prentice Hall, New York, 1985 vid M. Mousdale – "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2010 etan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI urning Private Limited, New Delhi, 2009.				

COURSE CODE	COURSE NAME	L	Т	Р	С
191ME547	TESTING OF MATERIALS	3	0	0	3
	COURSE OBJECTIVES				
• To prov of mate	vide a comprehensive exposure to various destructive and non destructive erials and its industrial applications	testi	ng r	neth	ods
UNIT 1	INTRODUCTION TO MATERIALS TESTING		9		
Overview of r Development of Advantages of	Overview of materials, Classification of material testing, Purpose of testing, Selection of material, Development of testing, Testing organizations and its committee, Testing standards, Result Analysis, Advantages of testing.				
UNIT 2	MECHANICAL TESTING		9		
Introduction to (Izod, Charpy) Shear test, Cre applications.	Luction to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test, Impact test, Charpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations, cations.				
UNIT 3	NON DESTRUCTIVE TESTING			9	
Visual inspect Techniques, A test, Acoustic o	Visual inspection, Liquid penetrant test, Magnetic particle test, Thermography test – Principles, Techniques, Advantages and Limitations, Applications. Radiographic test, Eddy current test, Ultrasonic test, Acoustic emission- Principles, Techniques, Methods, Advantages and Limitations, Applications.				les, nic 1s.
UNIT 4	MATERIAL CHARACTERIZATION TESTING			9	
Macroscopic a Principles, Ty Techniques, E Applications.	Macroscopic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) - Principles, Types, Advantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical and Magnetic Techniques- Principles, Types, Advantages and Limitations, Applications.				
UNIT 5	THERMAL BASED TESTING METHODS		9		
Thermal Testing: Differential scanning calorimetry, Differential thermal analysis. Thermo-mechanical and Dynamic mechanical analysis: Principles, Advantages, Applications. Chemical Testing: X-Ray Fluorescence, Elemental Analysis by Inductively Coupled Plasma-Optical Emission Spectroscopy and Plasma-Mass Spectrometry.					
TOTAL: 45 PERIODS					
COURSE OUTCOMES:					
Upon the comp	pletion of this course the students will be able to,				
CO1 Relate	the analyze different ways for materials testing				

CO2	Explain in detail about mechanical testing					
CO3	Explain in detail about Non-destructive testing					
CO4	Explain in detail about material characterization and testing					
CO5 Suggest methodologies for testing the material using Thermo-mechanical and methods						
	REFERENCES					
1. Bal	dev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa					
Pub 2. Cul You	Publishing House, 2009.Cullity, B. D., "Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc., New York, 2000.					
3. P.F	Field Foster, "The Mechanical Testing of Metals and Alloys" 7th Edition, Cousens Press, 2007.					
4. Me Am	4. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978					
5. AS	 ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals Metals Park, Obio, USA 					
6. Br	randon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.					