B.E – ELECTRICAL AND ELECTRONICS ENGINEERING CURRICULUM SYLLABUS Regulation 2019 CHOICE BASED CREDIT SYSTEM

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To prepare graduates to have successful and flourishing carrier in the electrical and electronics industry.

PEO2: To make students able to excel in their carrier with ethical values and managerial skills to solve real life technical problems.

PEO3: To make students capable of solving problems in Electrical and Electronics Engineering which are found in utilities and industries.

PEO4: To help students to engage in quest for self – learning and life - long learning.

PROGRAM OUTCOMES

PO1: Engineering knowledge: Enables to apply the knowledge of differential equations, integrals, matrix theory, Laplace, Fourier and z-transformation for engineering problems.

PO2: Problem analysis: Enables to define Basic science, Circuit theory, Electromagnetic Field theory, Control theory and to apply them to analyze complex engineering problems.

PO3: Design/development of solutions: Enables to configure and apply solutions to transmission and distribution networks, electrical apparatus and to handle the engineering aspects of Electrical Energy Generation and Utilization.

PO4: Use research-based knowledge: Enable to analysis, synthesis and interpret the data to provide valid conclusions.

PO5: Modern tool usage: Enables to design, implement and evaluate computer-based system/tools to meet the desired needs.

PO6: The engineer and society: Enables to apply the knowledge gained to assess societal, health, legal and cultural issues, and consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Enables to understand the impact of the Electrical engineering solutions in societal and environmental contexts and demonstrates the knowledge of and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Enables to function effectively on teams to full-fill the goals.

PO10: Communication: Enables to express the dynamic solutions to fit-into the engineer community.

PO11: Project management and finance: Demonstrate knowledge and understanding of engineering and management principles, and apply these to one's own work, as a member or a leader in a team.

PO12: Life-long learning: Enables to recognize the need for, and have the preparation to engage in continuing professional development.

Vel Tech Multi Tech

Dr.Rangarajan Dr.Sagunthala Engineering College

An Autonomous Institution

B.E – ELECTRICAL AND ELECTRONICS ENGINEERING CURRICULUM SYLLABUS Regulation 2019 CHOICE BASED CREDIT SYSTEM

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Vision

To emerge as a centre of academic excellence in Electrical and Electronics engineering and related fields through knowledge acquisition and propagation meeting global practices

Mission

- ➤ To nurture the talent and to facilitate the students with research ambience in Electrical and Electronics Engineering.
- > To propagate lifelong learning.
- > To impart the right proportion of knowledge, attitudes and ethics in students, to enable them take up positions of responsibility in the society and make significant contributions.

Vel Tech Multi Tech

Dr. Rangarajan Dr. Sagunthala Engineering College

An Autonomous Institution

B.E – ELECTRICAL AND ELECTRONICS ENGINEERING CURRICULUM SYLLABUS Regulation 2019 CHOICE BASED CREDIT SYSTEM

SEMESTER - I

S. No	Course Code	Name of the Course	Category	No of Hours/Week			C
THEO	RY		Category	L	T	P	
1	191HS101	English for Engineering Students	HSS	3	0	0	3
2	191MA101	Engineering Mathematics - I	BS	2	2	0	3
3	191CH101	Engineering Chemistry	BS	3	0	0	3
4	191PH101	Engineering Physics	BS	3	0	0	3
5	191ME111	Basic Civil and Mechanical Engineering	ES	3	0	0	3
6	191EE111	Basic Electrical and Electronics Engineering	ES	3	0	0	3
7	191ME112	Engineering Graphics	ES	2	2	0	3
PRACT	ΓICAL					•	
8	191PH10A	Physics Laboratory	BS	0	0	2	1
9	191CH10A	Chemistry Laboratory	BS	0	0	2	1
	Total 19 4 4				23		

SEMESTER - II

S. No	Course Code	Name of the Course	Cotogomy	No of Hours/Week		C	
THEOI	RY		Category	L	T	P	C
1	191HS201	Environmental Science and Engineering	HSS	3	0	0	3
2	191MA201	Engineering Mathematics II	BS	2	2	0	3
3	191PH203	Material Science for Electrical Engineering	BS	3	0	0	3
4	191CS211	Problem Solving and Python Programming	ES	3	0	0	3
5	191EC211	Electronic Devices and Circuits	ES	3	0	0	3
6	191EE221	Electric Circuit Analysis	PC	2	2	0	3
PRACT	TICAL						
7	191CS21A	Problem Solving and Python Programming Laboratory	ES	0	0	2	1
8	191ME21A	Engineering Practices Laboratory	ES	0	0	4	2
9	191EE22A	Circuits and Devices Laboratory	PC	0	0	4	2
		Total		16	4	10	23

SEMESTER - III

S. No	Course Code	Name of the Course	Category	No of Hours/Week			C
THEO	RY		Category	L	T	P	
1	191MA301	Linear Algebra and Numerical Methods	BS	2	2	0	3
2	191CS312	Object Oriented Programming	ES	3	0	0	3
3	191EE321	Network Analysis and Synthesis	PC	2	2	0	3
4	191EE322	Integrated Electronics	PC	3	2	0	4
5	191EE323	DC Machines and Transformers	PC	3	2	0	3
PRAC	ΓΙCAL				•		
6	191CS31B	Object Oriented Programming Laboratory	ES	0	0	2	1
7	191EE32A	DC Machines and Transformers Laboratory	PC	0	0	2	1
8	191EE32B	Integrated Circuits Laboratory	PC	0 0 2		1	
Total 13 8				6	19		

SEMESTER - IV

S. No	Course Code	Name of the Course	Catagory		No of Hours/Week		
THEOI	RY		Category	L	T	P	С
1	191MA404	Fourier Series and Transforms	BS	2	2	0	3
2	191EE421	Electromagnetic Theory	PC	3	0	0	3
3	191EE422	Control Systems	PC	2	2	0	3
4	191EE423	AC Rotating Machines	PC	3	0	0	3
5	191EE424	Microprocessors and Microcontrollers	PC	3	0	0	3
6	191EE425	Measurement and Instrumentation	PC	3	0	0	3
PRACT	TICAL						
7	191EE42A	AC Rotating Machines Laboratory	PC	0	0	2	1
8	191EE42B	Microprocessors and Microcontrollers Laboratory	PC	0	0	2	1
9	191MC46A	Internship 1	MC	0	0	0	0
		Total		16	4	4	20

SEMESTER - V

S. No	Course Code	Name of the Course	- Category	No of Hours/Week			\mathbf{c}
THEO	RY		Category	L	T	P	C
1	191EE511	Embedded System	ES	3	0	0	3
2	191EE521	Analog Electronics and Applications	PC	3	0	0	3
3	191EE522	Power Electronics	PC	3	0	0	3
4	191EE523	Transmission and Distribution	PC	3	0	0	3
5		Program Elective – I	PE	3	0	0	3
6		Open elective I	OE	3	0	0	3
PRACT	ΓICAL						
7	191EE51A	Embedded Laboratory	ES	0	0	2	1
8	191EE52A	Control and Instrumentation Laboratory	PC	0	0	2	1
9	191MC56A	Circuit Simulation Laboratory	MC	0	0	2	0
			18	0	8	20	

SEMESTER-VI

S. No	Course Code	Name of the Course	Category	No of Hours/Week		eek	C	
THEOI	RY		Category	L	T	P		
1	191HS601	Industrial Management and Economics	HSS	3	0	0	3	
2	191EE621	Digital Signal Processing	PC	3	0	0	3	
3	191EE622	Power System Analysis	PC	3	0	0	3	
4	191EE623	Solid State Drives	PC	3	0	0	3	
5		Program Elective -II	PE	3	0	0	3	
6		Open Elective-II	OE	3	0	0	3	
PRACT	ΓICAL							
7	191HS60A	Professional Communication	HSS	0	0	2	1	
8	191EE62A	Power Systems Laboratory	PC	0	0	2	1	
9	191EE62B	Power Electronics Laboratory	PC	0	0	2	1	
10	191MC66A	Internship 2	MC	0	0	0	0	
		Total	18 6 6					

SEMESTER-VII

S. No	Course Code	Name of the Course	G-4	No of Hours/Week			C
THEOI	RY		Category	L	T	P	
1	191HS701	Professional Ethics in Engineering	HSS	3	0	0	3
2	191EE721	High Voltage Engineering	PC	3	0	0	3
3	191EE722	Protection and Switchgear	PC	3	0	0	3
4		Program Elective – III	PE	3	0	0	3
5		Open elective III	OE	3	0	0	3
6		Open Elective - IV	OE	3	0	0	3
PRACT	TICAL						
7	191EE72A	Renewable Energy Systems Laboratory	PC	0	0	2	1
8	191EE77A	Project Work Phase I	PROJ	0	0	4	2
		Total		18 3 8			21

SEMESTER-VIII

S. No	Course	Name of the Course		No of			
	Code		Category	Hours/Week		C	
THEO	RY			L	T	P	
1		Program Elective - IV	PE	3	0	0	3
2		Program Elective - V	PE	3	0	0	3
PRAC	ΓICAL						
3	191EE87A	Project Work Phase II	PROJ	0	0	20	10
		Total		6 0 20			16

PROGRAM ELECTIVE – I (V SEMESTER)

S. No	Course Code	Name of the Course	Catagamy	l Hou	C		
THEOI	RY		Category L		T	P	
1	191HS531	Principles of Management	PE	3	0	0	3
2	191EE531	Communication Engineering	PE	3	0	0	3
3	191EE532	Digital Instrumentation	PE	3	0	0	3
4	191EE533	Electrical Machine Design	PE	3	0	0	3
5	191EE534	Theories of Power plant	PE	3	0	0	3
6	191EE535	Visual Languages and Applications	PE	3	0	0	3

PROGRAM ELECTIVE – II (VI SEMESTER)

S. No	Course Code	Name of the Course	Cotogomy	No of Hours/Week			C
THEOI	RY		Category	L T P			
1	191EE631	Computer Aided Design for Electrical Apparatus	PE	3	0	0	3
2	191EE632	Fundamentals of Nano - science	PE	3	0	0	3
3		Human Rights and Duties: Conceptual Perspectives	PE	3	0	0	3
4	191EE634	Microcontroller Based System Design	PE	3	0	0	3
5	191EE635	SMPS and UPS	PE	3	0	0	3
6	191EE636	Special Electrical Machines	PE	3	0	0	3

PROGRAM ELECTIVE – III (VII SEMESTER)

S. No	Course Code	Name of the Course	Cotogowy	Hou	C		
THEOI	RY		Category	L	T	P	C
1	191EE731	Alternative Energy Systems	PE	3	0	0	3
2	191EE732	Electric Energy Generation Utilization and	PE	3	0	0	3
		Conservation					
3	191EE733	Electric Traction	PE	3	0	0	3
4	191EE734	Energy Resources and Utilization	PE	3	0	0	3
5	191EE735	Modern Power Converters	PE	3	0	0	3
6	191EE736	Power Electronics for Renewable Energy	PE	3	0	0	3
		Systems					

PROGRAM ELECTIVE – IV (VIII SEMESTER)

S. No	Course Code	Name of the Course	- Category	l Hou			
THEOI	RY		Category	L T P		\mathbf{C}	
1	191EE831	Energy Efficiency in Buildings	PE	3	0	0	3
2	191EE832	HVDC Transmission	PE	3	0	0	3
3	191EE833	Industrial Automation	PE	3	0	0	3
4	191EE834	Intellectual Property Rights	PE	3	0	0	3
5	191EE835	Power Systems Operation and Control	PE	3	0	0	3
6	191EE836	Power System Transients	PE	3	0	0	3
7	191EE837	Real Time Systems	PE	3	0	0	3

PROGRAM ELECTIVE – V (VIII SEMESTER)

S. No	Course Code	Name of the Course	Cotogomy	l Hou	ek	C	
THEO	RY		Category	L	T	P	С
1	191EE838	Electrical and Hybrid Vehicles	PE	3	0	0	3
2	191EE839	Electrical Energy Audit	PE	3	0	0	3
3	191ES8310	Embedded Control of Electric Drives	PE	3	0	0	3
4	191EE8311	Flexible AC Transmission Systems	PE	3	0	0	3
5	191EE8312	Micro Electro Mechanical Systems	PE	3	0	0	3
6	191EE8313	Power Quality	PE	3	0	0	3
7	191EE8314	Power System Stability	PE	3	0	0	3

HUMANITIES AND SOCIAL SCIENCE (HSS)

S. No	Course Code	Course Title	Category	Contact Periods	L	T	P	C
1	191HS101	English for Engineering Students	HSS	3	3	0	0	3
2	191HS201	Environmental Science and Engineering	HSS	3	3	0	0	3
3	191HS601	Industrial Management and Economics	HSS	3	3	0	0	3
4	191HS60A	Professional Communication	HSS	2	0	0	2	1
5	191HS701	Professional Ethics in Engineering	HSS	3	3	0	0	3

BASIC SCIENCES (BS)

S. No	Course Code	Course Title	Category	Contact Periods	L	T	P	C
1	191MA101	Engineering Mathematics - I	BS	4	2	2	0	3
2	191CH101	Engineering Chemistry	BS	3	3	0	0	3
3	191PH101	Engineering Physics	BS	3	3	0	0	3
4	191PH10A	Physics Laboratory	BS	2	0	0	2	1
5	191CH10A	Chemistry Laboratory	BS	2	0	0	2	1
6	191MA201	Engineering Mathematics II	BS	4	2	2	0	3
7	191PH203	Material Science for Electrical Engineering	BS	3	3	0	0	3
8	191MA301	Linear Algebra and Numerical Methods	BS	4	2	2	0	3
9	191MA404	Fourier Series and Transforms	BS	4	2	2	0	3

ENGINEERING SCIENCES (ES)

S. No	Course Code	Course Title	Category	Contact Periods	L	T	P	C
1	191ME111	Basic Civil and Mechanical Engineering	ES	3	3	0	0	3
2	191EE111	Basic Electrical and Electronics Engineering	ES	3	3	0	0	3
3	191ME112	Engineering Graphics	ES	4	2	2	0	3
4	191CS211	Problem Solving and Python Programming	ES	3	3	0	0	3
5	191EC211	Electronic Devices and Circuits	ES	3	3	0	0	3
6	191CS21A	Problem Solving and Python Programming	ES	2	0	0	2	1
		Laboratory						
7	191ME21A	Engineering Practices Laboratory	ES	4	0	0	4	2
8	191CS312	Object Oriented Programming	ES	3	3	0	0	3
9	191CS31B	Object Oriented Programming Laboratory	ES	2	0	0	2	1
10	191EE511	Embedded System	ES	3	3	0	0	3
11	191EE51A	Embedded Laboratory	ES	2	0	0	2	1

PROFESSIONAL CORE (PC)

S. No	Course Code	Course Title	Category	Contact Periods	L	Т	P	C
1		Electric Circuit Analysis	PC	4	2	2	0	3
2	191EE22A	Circuits and Devices Laboratory	PC	4	0	0	4	2
3	191EE321	Network Analysis and Synthesis	PC	4	2	2	0	3
4		Integrated Electronics	PC	5	3	2	0	4
5	191EE323	DC Machines and Transformers	PC	5	3	2	0	3
6	191EE32A	DC Machines and Transformers Laboratory	PC	2	0	0	2	1
7	191EE32B	Integrated Circuits Laboratory	PC	2	0	0	2	1
8	191EE421	Electromagnetic Theory	PC	3	3	0	0	3
9	191EE422	Control Systems	PC	4	2	2	0	3
10	191EE423	AC Rotating Machines	PC	3	3	0	0	3
11	191EE424	Microprocessors and Microcontrollers	PC	3	3	0	0	3
12	191EE425	Measurement and Instrumentation	PC	3	3	0	0	3
13	191EE42A	AC Rotating Machines Laboratory	PC	2	0	0	2	1
14		Microprocessors and Microcontrollers Laboratory	PC	2	0	0	2	1
15		Analog Electronics and Applications	PC	3	3	0	0	3
16	191EE522	Power Electronics	PC	3	3	0	0	3
17	191EE523	Transmission and Distribution	PC	3	3	0	0	3
18	191EE52A	Control and Instrumentation Laboratory	PC	2	0	0	2	1
19	191EE621	Digital Signal Processing	PC	3	3	0	0	3
20	191EE622	Power System Analysis	PC	3	3	0	0	3
21	191EE623	Solid State Drives	PC	3	3	0	0	3
22	191EE62A	Power Systems Laboratory	PC	2	0	0	2	1
23		Power Electronics Laboratory	PC	2	0	0	2	1
24	191EE721	High Voltage Engineering	PC	3	3	0	0	3
25		Protection and Switchgear	PC	3	3	0	0	3
26	191EE72A	Renewable Energy Systems Laboratory	PC	2	0	0	2	1

CREDIT DISTRIBUTION

S. NO	CATEGORY	CRE	EDIT
		REGULAR	LATERAL
1	BS (Basic Science)	23	06
2	HSS (Humanities and Social Science)	13	07
3	ES (Engineering Science)	26	8
4	PC (Professional Core Courses)	62	57
5	PE (Professional Elective Courses)	15	15
6	OE (Open Elective Courses)	12	12
7	MC (Mandatory Courses)	00	00
8	PROJ(Project)	12	12
	TOTAL	163	117

SUMMARY

S. NO	SUBJECT		(CREDI	TS AS	PER	SEME	STER		CREDITS
	AREA	I	II	III	IV	V	VI	VII	VIII	TOTAL
1	HSS	3	3	-	-	-	4	3	-	13
2	BS	11	6	3	3	-	-	-	-	23
3	ES	9	9	4	-	4	-	-	-	26
4	PC	-	5	12	17	10	11	7	-	62
5	PE	-	•	-	-	3	3	3	6	15
6	OE	-	-	-	-	3	3	6	-	12
7	MC	-	-	-	0	0	0	-	-	-
8	PROJ	-	-	-	-	-	-	2	10	12
	TOTAL	23	23	19	20	20	21	21	16	163

SEMESTER – I

YEAR	I	SEMESTER	I	L	T	P	C
COURSE CODE /	191HS1	01 / ENGLISH FOR ENGIN	NEERING	2	0	0	2
COURSE TITLE		STUDENTS		3	U	U	3

COURSE OBJECTIVES

- ✓ Equip students with the English language skills required for the successful undertaking of academic studies.
- ✓ Improve general and academic listening skills
- ✓ Provide guidance and practice in basic geranial and classroom conversation and to engage in specific academic speaking activities
- ✓ Strengthen the reading and writing skills of students of engineering

SYLLABUS

UNIT - I VOCABULARY BUILDING 9

Word formation, Prefixes and Suffixes, Root words from foreign languages, Synonyms, Antonyms, Compound Nouns, Standard Abbreviations.

UNIT - II GRAMMATICAL COMPETENCY 9

Noun, Verb, Adjective, Subject-Verb Agreement, Articles, Prepositions, Purpose expressions, Model Verbs.

UNIT - III BASIC WRITING SKILLS 9

Sentence structure, Phrases, Clauses, Coherence, Cohesion (using linking words), Paragraph Writing (Descriptive and Narrative)

UNIT - IV READING SKILLS 9

Reading Strategies, Skimming and Scanning, Reading Comprehension exercises with multiple choice and open ended questions, Transforming Information in the form of charts, Note Making.

UNIT - V ORAL COMMUNICATION 9

(This unit involves interactive practice sessions in Language Lab)

- Listing Comprehension.
- Pronunciation, Syllable and Stress, Rhythm and Intonation.
- General conversations and dialogues, common in everyday situations.
- Short Speech.

COURSE OUTCOMES

On completion of the course, students will be able to

- CO1 Infer meanings of unfamiliar words from context

 CO2 Enable to achieve linguistic competence and be able to use grammar as a tool or resource in the comprehension and creation of oral and written discourse efficiently according to the situation.
- CO3 Write cohesively, coherently and flawlessly with a wide range of vocabulary and organizing their ideas logically on a topic.
- **CO4** Activate and reinforce the habit of reading and writing effectively in their discipline.
- **CO5** Collaborate with multicultural environment.

TEXT BOOKS

- 1. Department of English, Anna University, "Mindscapes: English for Technologists and Engineers", Orient Blackswan, Chennai 2012
- 2. Dhanavel S. P, "English and Communication Skills for Students of Science and Engineering", Orient Blackswan, Chennai 2011.
- 3. "Communication Skills", Sanjay Kumar and Pushp Lata, Oxford University Press, 2011.

- 1. "Study Writing", Liz Hamp-Lyons and Ben Heasly, Cambridge University Press, 2006.
- 2. "Remedial English Grammar", F.T. Wood. Macmillan. 2007.
- 3. "Practical English Usage", Michael Swan. OUP. 1995.
- 4. "Exercises in Spoken English", Parts. I-II, CIEFL, Hyderabad. Oxford University Press.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	-	-	-	-	-	2	2	-	2	1	-	-	1
CO2	3	2	1	-	-	-	-	-	2	2	-	2	1	-	-	1
CO3	3	2	1	-	-	-	-	-	2	2	-	2	1	-	-	1
CO4	3	2	1	-	-	-	-	-	2	2	-	2	1	-	-	1
CO5	3	2	1	-	-	1	1	-	2	2	-	2	1	i	-	1

COURSE TITLE 191MA101 / ENGINEERING MATHEMATICS - I 2 2 0 3 COURSE OBJECTIVES To develop greater knowledge and understanding of mathematics and to attain the skills necessary for success in the study of higher mathematics. SYLLABUS UNIT - I	YEAR	I	SEMESTER	I	L	T	P	C
To develop greater knowledge and understanding of mathematics and to attain the skills necessary for success in tstudy of higher mathematics. SYLLABUS UNIT - I		191MA10	01 / ENGINEERING MATH	EMATICS - I	2	2	0	3
SYLLABUS UNIT - I			COURSE OBJECTIV	ES		'		
UNIT - I			nd understanding of mathematics	and to attain the	skills ne	cessary	for succ	cess in the
Characteristic equation, Eigen values and Eigen vectors of a real matrix, Properties of Eigen values, Cayley Hamilton theore Orthogonal reduction of a symmetric matrix to diagonal form, Reduction of quadratic form by orthogonal transformatic Applications. UNIT - II			SYLLABUS					
Orthogonal reduction of a symmetric matrix to diagonal form, Reduction of quadratic form by orthogonal transformatic Applications. UNIT - II GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS 11 Curvature, Cartesian and Polar coordinates, Centre of curvature, Circle of curvature, Evolutes and Envelopes, Applications. UNIT - III FUNCTIONS OF SEVERAL VARIABLES 11 Function of two variables, Partial derivatives, Total derivative, Change of Variables, Jacobians, Taylor's expansion, Maxima a Minima, Constrained Maxima and Minima by Lagrangian Multiplier method, Applications. UNIT - IV ORDINARY DIFFERENTIAL EQUATIONS 11 Linear differential equations of second and higher order with constant coefficients, Method of variation of parameters, Equation reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation and Legendre's linear equations linear equations with constant coefficients, Applications. COURSE OUTCOMES On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.	UNIT - I		MATRICES					12
Curvature, Cartesian and Polar coordinates, Centre of curvature, Circle of curvature, Evolutes and Envelopes, Applications. UNIT - III	Orthogonal reduction of Applications.	a symmetric m	atrix to diagonal form, Reductio	n of quadratic for	rm by o	rthogona		formation
UNIT - III FUNCTIONS OF SEVERAL VARIABLES 11 Function of two variables, Partial derivatives, Total derivative, Change of Variables, Jacobians, Taylor's expansion, Maxima at Minima, Constrained Maxima and Minima by Lagrangian Multiplier method, Applications. UNIT - IV ORDINARY DIFFERENTIAL EQUATIONS 11 Linear differential equations of second and higher order with constant coefficients, Method of variation of parameters, Equation reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation and Legendre's linear equations Simultaneous linear equations with constant coefficients, Applications. COURSE OUTCOMES On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.								
Function of two variables, Partial derivatives, Total derivative, Change of Variables, Jacobians, Taylor's expansion, Maxima at Minima, Constrained Maxima and Minima by Lagrangian Multiplier method, Applications. UNIT - IV ORDINARY DIFFERENTIAL EQUATIONS Linear differential equations of second and higher order with constant coefficients, Method of variation of parameters, Equation reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation and Legendre's linear equations simultaneous linear equations with constant coefficients, Applications. COURSE OUTCOMES On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.	Curvature, Cartesian and F	olar coordinates	s, Centre of curvature, Circle of cu	rvature, Evolutes	and Enve	elopes, A	Applicat	ions.
Minima, Constrained Maxima and Minima by Lagrangian Multiplier method, Applications. UNIT - IV ORDINARY DIFFERENTIAL EQUATIONS 11 Linear differential equations of second and higher order with constant coefficients, Method of variation of parameters, Equation reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation and Legendre's linear equations simultaneous linear equations with constant coefficients, Applications. COURSE OUTCOMES On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.								
UNIT - IV ORDINARY DIFFERENTIAL EQUATIONS Linear differential equations of second and higher order with constant coefficients, Method of variation of parameters, Equation reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation and Legendre's linear equations linear equations with constant coefficients, Applications. COURSE OUTCOMES On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.					, Taylor	's expan	sion, M	axima and
Linear differential equations of second and higher order with constant coefficients, Method of variation of parameters, Equation reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation and Legendre's linear equations. COURSE OUTCOMES On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.			, , , ,					44
reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation and Legendre's linear equations. COURSE OUTCOMES On completion of the course, students will be able to Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.					• .•	<u> </u>		
Simultaneous linear equations with constant coefficients, Applications. COURSE OUTCOMES On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.								
COURSE OUTCOMES On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.				cous inical equation	ni anu L	egenare	S IIIIca	i equation
On completion of the course, students will be able to CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.	Simultaneous inicar equal	ons with consta	**	ES				
CO1 Analyze the characteristics equation of a linear system with Eigen values and vectors for practical application. CO2 Determine the bending of family of curves using differential calculus which deals in various disciplines. CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.	On completion of the cour	se, students will						
CO3 Apply partial derivatives in various engineering problems. CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.				values and vectors	s for prac	ctical ap	plicatio	n.
CO4 Identify and solve the real time problems using higher order differential equations. TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.	CO2 Determine the b	ending of family	y of curves using differential calcu	lus which deals in	various	disciplin	ies.	
TEXT BOOKS 1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.	CO3 Apply partial de	rivatives in vari	ous engineering problems.					
1. Kreyszig. E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.	CO4 Identify and sol	ve the real time	problems using higher order differ	ential equations.				
	, 		TEXT BOOKS					
2. Grewal B.S, "Higher Engineering Mathematics", Khanna Publications, 42nd Edition, 2012.					lition, 20	012.		

- 1. Veerarajan. T, "Engineering Mathematics I", Tata McGraw Hill Publishing Co, New Delhi, 5th edition, 2006. 2. Kandasamy.Pet.al. "Engineering Mathematics", Vol. I (4th revised edition), S. Chand & Co, New Delhi, 2000.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	-	-	-	-	-	-	1	-	-	1	1
CO2	3	3	2	2	1	-	-	-	-	-	-	1	-	-	1	1
CO3	3	3	2	2	1	-	-	-	-	-	-	1	-	-	1	1
CO4	3	3	2	2	1	-	-	-		-	-	1	-	-	1	1
CO5	3	3	2	2	1	-	-	-	-	-	-	1	-	-	1	1

YEAR	I	SEMESTER	I	L	T	P	C
COURSE CODE / COURSE TITLE	191CH	1101 / ENGINEERING CHE	MISTRY	3	0	0	3

✓ To acquaint the students with the developments of microscopic chemistry in terms of atomic, molecular, and intermolecular forces and acquires the knowledge of water treatment. The students will be able to analyze the properties and applications of polymer and advanced materials.

SYLLABUS

UNIT - I CHEMICAL BONDING

9

Types of chemical bonds, bond polarity, dipole moment, partial ionic character, consequences. Weak Interactions, Hydrogen bonding, van der Waals forces, influence on properties of matter. Metallic bond, free electron theory, MO treatment, band theorymetals, semiconductors and insulators. Non stoichiometric semiconductors, chalgogen semiconductors. Defect structures of crystals-Schottky and Frenkel defects.

UNIT - II WATER CHEMISTRY

9

Hardness, determination (EDTA method). Water softening, zeolite and demineralization processes. Desalination by electro-dialysis and reverse osmosis. Water analysis by fluoride ion, Water quality parameters, Instrumental methods for water analysis-AAS, flame emission spectroscopy, ICP-MS and photocolorimetry.

UNIT - III ELECTRO CHEMISTRY

9

Electrode potential, standard and reference electrodes, Nernst equation, emf series, applications. Galvanic and concentration cells. Applications of potential measurements, glass electrode, pH measurement, acid- base titration, redox titration. Conductance measurement, applications - conductometric titrations.

UNIT - IV POLYMERS 9

Classification, degree of polymerization, molecular weight – Mn and Mw. Polymerization reactions. Glass transition temperature, factors affecting Tg, determination by DSC. Polymer processing, compounding, outline of moulding techniques compression, injection, extrusion and blow moulding. Charge transport in conjugated polymers, doped conjugated polymers, glucose biosensor. Polymers for LED and LCD displays.

UNIT - V ADVANCED MATERIALS

9

Carbon nanotubes and carbon fibers, graphene and polymer nano-composites, properties and applications - morphological studies by SEM and TEM. Solid oxide materials and polymer electrolytes, energy storing applications. Polymer blends and alloys, photo and electroluminescence materials, insulating materials, photopolymers and photoresists for electronics, polymer photovoltaics.

COURSE OUTCOMES

On completion of the course, students will be able to

- Analyse microscopic chemistry in terms of atomic, molecular and Intermolecular forces for real time applications of semiconductors.
- CO2 Investigate the various water treatment and softening methods.
- **CO3** Appraise the types and mechanism of electrochemical reaction in batteries and fuel cells.
- **CO4** Explain the basic principle, types and mechanism of polymerization process and techniques.
- **CO5** Assess the properties, characterization and applications of advanced materials for energy storage.

TEXT BOOKS

- 1. Mary Jane Shultz, "Engineering Chemistry", Cengage Learning, USA, 2009.
- 2. Palanna O. G., "Engineering Chemistry", Tata Mc. Graw Hill Education Pvt. Ltd., New Delhi, 2009.

- 1. Gowarikar V. R., Viswanathan N.V and Jayadev Sreedhar, "Polymer Science", New Age International (P) Ltd., New Delhi, 2011
- 2. Vijayamohanan K. Pillai and Meera Parthasarathy, "Functional Materials A Chemist's Perspective" Universities Press, India, 2012.
- 3. Gesser H.D., "Applied Chemistry A Textbook for Engineers and Technologies", Springer, New York, 2008.
- 4. Shashi Chawla, "A Text book of Engineering Chemistry", Dhanpat Rai & Co, New Delhi, 2005.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	2	2	-	-	-	-	2	1	1	1	1
CO2	3	3	2	2	-	2	2	-	-	-	-	2	1	1	1	1
CO3	3	3	2	2	-	2	2	-	-	-	-	2	1	1	1	1
CO4	3	3	2	2	-	2	2	-	-	-	-	2	1	1	1	1
CO5	3	3	2	2	-	2	2	-	-	-	-	2	1	1	1	1

YEAR	I	SEMESTER	I	L	T	P	C
COURSE CODE / COURSE TITLE	191F	PH101 / ENGINEERING PH	YSICS	3	0	0	3
		COURSE OR IECTIVE	'C				

✓ The course aims to equip engineering undergraduates with principles of Physics in a broader sense with a view to lay foundation for the various engineering courses.

SYLLABUS

UNIT - I PROPERTIES OF SOLIDS 9

Elasticity, Hooke's law, stress -strain diagram, Poisson's ratio, Factors affecting elasticity, Bending moment, Depression of a cantilever, Young's modulus by uniform bending, Young's modulus by non-uniform bending (Theory and Experiment), Torsional stress and twisting couple, Torsional Pendulum ((Theory and Experiment) I-shaped girders.

UNIT - II PRINCIPLES OF LASERS

9

Properties of laser radiation and their significance-wavelength, power, monochromaticity, coherence. Types of lasers working media and their radiation characteristics-Power, wavelength and operational modes of He-Ne, Carbon-dioxide. Physical principles of Laser beam delivery systems. Applications- Industry and Medical. Selection of lasers for various applications.

UNIT - III OPTICAL FIBRE SYSTEMS

9

Optical Fibres, Propagation mechanism, Critical Angle, Snell's Law, Total Internal Reflection, Acceptance cone, Numerical aperture, Types of fibers, Attenuation, Active and passive fibre sensors (Temperature and Displacement), Applications (Industry and Medical), communication in optical fiber, Endoscope.

UNIT - IV WAVE NATURE OF PARTICLES

9

Introduction to Quantum mechanics, Black body radiation, Planck's Hypothesis, Compton Effect (Theory and Experiment), Wave nature of Particles, Time-dependent and time-independent Schrodinger equation for wave function, Schrodinger equation for one dimensional problems, particle in a box-SEM and TEM.

UNIT - V SOLID STATE PHYSICS

9

Crystalline and non crystalline materials, Lattice, Unit cell, Bravais lattice, Lattice planes, Miller indices, Expression for inter planar spacin, Bragg's law, Diffraction of X-rays by crystal planes, Co-ordination number, Atomic packing factors (SC, FCC, BCC and HCP structures), Diamond and graphite structures (qualitative treatment), Crystal growth techniques (Bridgman and Czochralski).

COURSE OUTCOMES

On completion of the course, students will be able to

- CO1 Demonstrate the proficiency on the properties of matter and its applications

 CO2 Describe the working principles of Laser and its developments in industrial and medical applications

 CO3 Explain the propagation of waves in optical fibers and their applications

 CO4 Apply the theory of wave nature of particles in various microscopic applications
 - **CO5** Analyze the structure of materials and its crystal growth techniques

7 maryze the structure of materials and its crystal growth technique

TEXT BOOKS

- 1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.
- 2. "Introduction to Solid State Physics", 7th Edition, Charles Kittel, Wiley, Delhi 2007.
- 3. "Engineering Physics", R.K. Gaur and S.L. Gupta, Dhanpat Rai Publications (P) Ltd., 8th Edition, New Delhi (2001).

- 1. E. Hecht, "Optics", Pearson Education, 2008.
- 2. "Laser Fundamentals", William T. Silfvast, 2nd Edition, Cambridge University press, New York, 2004.
- 3. "Fundamentals of Physics", 6th Edition, D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, New York 2001.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1													1	_	-	-
	3	3	2	2	-	2	2	2	2	-	-	2				
CO2	3												1	-	-	-
		3	2	2	-	2	2	2	2	-	-	2				
CO3	3												1	-	-	-
		3	2	2	-	2	2	2	2	-	-	2				
CO4	3												1	-	-	-
		3	2	2	-	2	2	2	2	-	-	2				
CO5	3												1	-	-	-
		3	2	2	-	2	2	2	2	-	-	2				

YEAR	I	SEMESTER	I	L	T	P	C
COURSE CODE /	191ME11	1 / BASIC CIVIL AND ME	CHANICAL	2	Λ	0	2
COURSE TITLE		ENGINEERING		3	U	U	3

- ✓ To create awareness on fundamental knowledge on various domains of civil engineering
- ✓ To introduce the sources of water and treatment of water, sewage treatment and transportation modes
- ✓ To introduce the fundamentals of Power Plant Engineering
- ✓ To introduce the fundamentals of IC engines
- ✓ To introduce the fundamentals of Energy resources and refrigeration cycles

SYLLABUS

UNIT - I SCOPE OF CIVIL ENGINEERING

9

Introduction, Functions and role of Civil Engineer, Branches of Civil Engineering, Materials, Properties, classification and characteristics of building stones, bricks, timber, cement and cement concrete, reinforcing steel, Components of residential building, Foundation, Types and necessity.

UNIT - II WATER RESOURCES & ENVIRONMENTAL ENGINEERING

9

Sources of water, Hydrologic cycle, Rain water harvesting, importance, methods of rain water harvesting, Water demand estimation, Sources of water, Quality of water, Treatment of water. Water distribution. Sewerage, collection, treatment and disposal of sewage, Septic tanks.

UNIT - III POWER PLANTS, PUMPS AND TURBINES

9

Introduction to Power Plant, Classification of Power Plants, Working principle of steam, Gas, Diesel, Hydro-electric, Geo-thermal and Nuclear Power plants, Merits and Demerits, Pumps and turbines, working principle of single acting and double acting Reciprocating pumps, Centrifugal Pump.

UNIT - IV IC ENGINES 9

Introduction to Internal combustion engines, Working principle of Petrol and Diesel Engines, Four stroke and two stroke cycles, Comparison of four stroke and two stroke engines.

UNIT - V RENEWABLE ENERGY AND REFRIGIRATION

9

Introduction to renewable energy sources, Non renewable energy sources, Comparison of Electrical Energy Storage Technologies. Vapour compression Refrigeration system, Vapour absorption refrigeration system.

COURSE OUTCOMES

On completion of the course, students will be able to

- **CO1** Explain the usage of construction material and proper selection of construction materials.
- **CO2** Explain about water resources, sewage treatment and transportation systems.
- **CO3** Explain about the components use in power plants.
- **CO4** Describe the internal combustion engines.
- **CO5** Explain about the renewable energy sources and refrigeration cycles.

TEXT BOOKS

1. Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engineering", Tata McGraw Hill Publishing Co, New Delhi, 1996.

- 1. S.K. Garg, "Water Supply Engineering", Khanna publishers, Delhi, 2005.
- 2. Seetharaman S, "Basic Civil Engineering", Anuradha Agencies, 2005.
- 3. T. Jha and S.K. Sinha, "Construction and Foundation Engineering", Khanna publishers, Delhi, 2003.
- 4. Venugopal K. and Prahu Raja V, "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, 2000.
- 3. Ramamrutham S, "Basic Civil Engineering", Dhanpat Rai Publishing Co.(P) Ltd. 1999.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	1	-	2	2	1	-	-	_	2	2	1	1	1
CO2	3	3	1	1	-	2	2	1	-	-	-	2	2	1	1	1
CO3	3	3	1	1	-	2	2	1	-	-	-	2	2	1	1	1
CO4	3	3	1	1	-	2	2	1	-	-	-	2	2	1	1	1
CO5	3	3	1	1	-	2	2	1	-	-	_	2	2	1	1	1

YEAR	I	SEMESTER	I	L	T	P	C					
COURSE CODE /	191E	E111 / BASIC ELECTRICA	L AND	2	Λ	0	•					
COURSE TITLE	E	LECTRONICS ENGINEER	ING	3	0	0	3					
COURSE OBJECTIVES												
✓ To understand the	structure of Elec	etric Power Systems.										
✓ To execute safety	precautions.	•										
✓ To study about Ele	ectric laws.											
✓ To know about co	nstruction of met	ters.										
✓ To understand abo	out Electronics ar	nd Communication systems.										
		SYLLABUS										
UNIT - I		INDIAN ELECTRICITY S	CENARIO				9					
Electric Power, Generation	resources, Tran	smission types & Distribution sy	stem (levels of vo	oltage, po	ower rat	ings and	statistics),					
Regulatory Authorities governing Indian Electricity Protection & Safety, Hazards of electricity-shock, effects of electricity on the												
human body. Electrical safe	ety practices, Pro	tection devices.		•			-					
UNIT - II	BA	SICS OF ELECTRICAL CO	OMPONENTS				9					
Evolution of Electricity and Electrical inventions - Charge, Electric potential, voltage, current, power, energy, DC, AC, time												

period, frequency, phase, flux, flux density, RMS, Average, Peak, Phasor & Vector diagram.

BASIC LAWS OF ELECTRIC SYSTEMS & MEASUREMENTS

Electric Circuits, Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law-Illustrative examples, Analog Moving Iron, Moving Coil and Digital meters, Types and usage..

UNIT - IV **BASICS ELECTRONICS**

Electrical Vs Electronics, Electronic products and systems, Electronic Devices (Diode-Forward bias, reverse bias, Transistor (CE, CB, CC), Electronic components, Electronic Circuits-Rectifier, Regulator &IC-Basic Amplifiers and Oscillators- Communication system Block diagram (Transmitter and Receiver).

BASICS OF COMMUNICATION ENGINEERING

Amplitude Modulation, AM, DSBSC, SSBSC, VSB-PSD, modulators and demodulators, Angle Modulation, PM and FM-PSD.

COURSE OUTCOMES

On completion of the course, students will be able to

-	
CO1	Summarizes about different structures of Power system and safety measures.
CO2	Explain about the basics of Electricity.
CO3	Discuss on various electric circuits and use of measuring instruments
CO4	Clarify the working of basic electronic devices such as diode, transistor and operational amplifiers
CO5	Infer about Digital Electronics and Communication System.

TEXT BOOKS

- 1. S Salivahanan, Rangarajan, "Basic Electrical Electronics & Measurement Engineering", Tata McGraw Hill Publishing Co Ltd. 2. "Basic Electric Engineering", D P Kothari & Nagrath, Tata McGraw Hill.
- 3. C.L.Wadhwa, "Generation, Distribution and Utilisation of Electrical Energy", New Age international pvt.ltd. 2003.

- 1. M.S. Sukhija and T.K. Nagsarkar, "Basic Electrical and Electronic Engineering", Oxford, 2016.
- 2. Albert Paul Malvino, "Electronic Principles", Tata Mcgraw Hill, 2002.
- 3. Simon Haykin, "Communication Systems", Wiley Eastern, Third Edition, 1996.
- 4. M.Morris Mano, Digital Design, Third Edition, Pearson Publication.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	-	-	ı	-	-	-	-	-	-	2	1	1	1
CO2	3	2	2	-	-	ı	-	-	-	-	-	-	2	1	1	1
CO3	2	1	1	-	-	ı	-	-	-	-	-	-	2	1	1	1
CO4	2	1	1	1	1	1	-	-	-	-	-	-	2	1	1	1
CO5	2	1	1	1	-	ı	-	-	-	-	-	-	2	1	1	1

YEAR	I	SEMESTER	I	L	T	P	C
COURSE CODE / COURSE TITLE	191M	E112/ ENGINEERING GRA	APHICS	2	2	0	3

- ✓ To explain the importance of an engineering drawing and explain the role of computer aided design.
- ✓ To convey the basics of engineering drawing of curves and concepts of free hand sketching.
- ✓ To teach different methods of making views of simple objects resembling points, lines and surfaces.
- ✓ To teach different methods of making views of simple objects resembling points, lines and surfaces.
- ✓ To establish the importance of sections and developments made in drawing.
- ✓ To develop an intuitive understanding of underlying significance of using pictorial drawings.

SYLLABUS

PLANE CURVES AND FREE HAND SKETCHING UNIT - I

Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views-Free hand sketching of multiple orthographic views from single pictorial view of objects.

UNIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projections - Introduction - Principles -Principal planes-First angle projection. Projection of points located in all quadrants. Projection of straight lines inclined to both the principal planes, Determination of true lengths and true inclinations by rotating line method, traces, Projection of planes (regular polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT - III PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT - IV SECTION OF SOLIDS & DEVELOPMENT OF LATERAL SURFACES OF SOLIDS

Sectioning of simple solids in vertical position when the cutting plane is inclined to one of the principal planes and perpendicular to the other - obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids like Prisms, pyramids, cylinders and cones.

UNIT - V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection - Isometric scale -Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, and cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids like Prisms, pyramids and cylinders by visual ray method.

COURSE OUTCOMES

On completion of the course, students will be able to

(CO1	Draw engineering curves and apply the concepts of free hand sketching.
(CO2	Draw orthographic views of points, lines and surfaces.
(CO3	Draw visualizations of simple solid objects as per orthographic projections.
(CO4	Draw sections and developments made in drawing.

CO5 Draw pictorial drawings of simple objects.

TEXT BOOKS

1. N.D. Bhatt, Engineering Drawing, 49th edition, Charotar Publishing House, 2006.

- 1. Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008
- 3. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 4. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	_	2	1	1	_	-	1	1	1	1	1	3	1
CO2	3	3	3	_	2	1	1	-	-	1	1	1	1	1	3	1
CO3	3	3	3	-	2	1	-	-	-	1	1	1	1	1	3	1
CO4	3	3	3	_	2	1	ı	-	-	1	1	1	1	1	3	1
CO5	3	3	3	-	2	1	ı	-	-	1	1	1	1	1	3	1

YEAR		I	SEMESTER	I	L	T	P	C					
	SE CODE / SE TITLE	191F	PH10A / PHYSICS LABORA	TORY	0	0	2	1					
			COURSE OBJECTIV	ES									
✓	Students will be	able to demons	trate an understanding of the so	cientific method,	so that	they ma	ay use 1	the training					
	beneficial in their higher pursuits.												
	LIST OF EXPERIMENTS												
1													
2	2 Determination of Young's modulus by non-uniform bending method.												
3													
4			d particle size using Laser.										
5	Determination of	f acceptance angl	e in an optical fiber.										
			DEMONSTRATION										
1			mercury spectrum – spectrometer	grating.									
2	Demonstration o												
3	Determination of	f fiber thickness	– Air Wedge method.										
			COURSE OUTCOM	ES									
	letion of the cours												
CO1			s of matter in determining the var										
CO2	CO2 Attains the practical knowledge to apply principles of optics for various engineering applications.												
CO3	CO3 Demonstrate the technical knowledge on quantum mechanical concepts.												
			REFERENCES										
1. Wilson	1. Wilson J.D. and Hernandez C.A., "Physics Laboratory Experiments", Houghton Mifflin Company, New York, 2005.												

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	2	2	2	2	-	-	2	1	-	-	-
CO2	3	3	2	2	-	2	2	2	2	-	-	2	1	-	-	-
CO3	3	3	2	2	-	2	2	2	2	-	-	2	1	-	-	-

YEAR		I	SEMESTER	I	L	T	P	C						
	SE CODE / SE TITLE	191Cl	H10A / CHEMISTRY LAB	ORATORY	0	0	2	1						
			COURSE OBJECT	IVES										
			anding of the basic principles in		nalysis.									
✓	To attain the analy	tical knowledg	e of students by conducting vari											
			LIST OF EXPERIM	ENTS										
1	Determination of	f total, permane	nt, temporary, calcium and mag	nesium hardness of v	vater by	EDTA 1	nethod.							
2			mination of strength of an acid.											
3	Estimation of iron by potentiometry. Determination of molecular weight of polymer by viscosity average method.													
4	Determination of molecular weight of polymer by viscosity average method.													
5														
6														
	7 Estimation of Copper in ore.													
8	Estimation of nic													
9			and acidity of a water sample.											
10	Determination of	f rate of corrosi	on by weight loss method.											
			COURSE OUTCOM	MES										
	oletion of the cours													
CO1			ive chemical analysis by instrur											
CO2	·		ardness, chloride, sodium/potass											
CO3	CO3 Solve analytical problems in spectrometer and flame photometer for the identification and quantification.													
	REFERENCES													
1. Vogel	's Textbook of qua	antitative chemi	cal Analysis (8th edition, 2014).											

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	2	2	2	2	-	-	2	2	1	1	1
CO2	3	3	2	2	-	2	2	2	2	-	-	2	2	1	1	1
СОЗ	3	3	2	2	-	2	2	2	2	-	-	2	2	1	1	1

SEMESTER - II

YEAR	I	SEMESTER	II	L	T	P	C
COURSE CODE /	191HS201	/ENVIRONMENTAL SCI	ENCE AND	2	•	•	2
COURSE TITLE		ENGINEERING		3	U	U	3

COURSE OBJECTIVES

- ✓ This course provides the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices.
- ✓ It describes the need to lead more sustainable lifestyles, to use resources more equitably.
- ✓ It helps to create a concern for our environment that will trigger pro-environmental action, including activities we can do in our daily life to protect it.
- ✓ Furthermore, it deals the social issues and ethics to develop quality engineer in our country.

SYLLABUS

UNIT - I ENVIRONMENT – AN OVERVIEW 9

Ecosystem - concept, structure, function, types, Energy flow in ecosystem, Biodiversity and its conservation, values of biodiversity, threats to biodiversity conservation of biodiversity, Natural resources - types, uses.

UNIT - II ENVIRONMENTAL IMPACT OF ENERGY SOURCES

9

Sources of primary energy, present and future consumption of energy, environmental impacts of energy development- oil, natural gas, coal, hydro electric, nuclear power, wind mill and solar panels, Urban problems related to energy, case studies

UNIT - III CLIMATIC CHANGE AND SOLID WASTE MANAGEMENT

9

Environmental pollution- air, water, soil, marine and noise pollution- green house gases- causes, effects- global warming, ozone layer depletion, acid rain-sources and effects. Pollution control strategies, preventive measures, green technologies, green building concepts, standards and regulations, role of individuals, Sustainable development, Hazardous wastes, e-waste, source effect, management, Nuclear waste-sources, effects, management, Recycling of waste, Future challenges.

UNIT - IV HUMAN POPULATION AND THE ENVIRONMENT

9

Population growth, variation among nations, population explosion, family welfare programme, environment and human health, human rights, value education, HIV / AIDS, women and child welfare, role of information technology in environment and human health, Case studies.

UNIT - V ENVIRONMENTAL LAW AND ETHICS

9

Legal provision in India, environmental acts - air, water, forest, soil and wildlife. Environmental ethics, theories and codes, resource consumption patterns, equity-disparity, urban-rural equity issues, need for gender equity, preserving resource for future generation, right of animals, ethical basis of environment education and awareness, ethical problem solving- changing attitude, conservation ethics and traditional value systems of India, Effect of social media on the adolescent.

COURSE OUTCOMES

On completion of the course, students will be able to

CO1	Interpret the concept of ecosystem, biodiversity and its conservation.
CO2	Demonstrate the environmental impacts of energy development.
CO3	Categorize the various environmental pollutions and select suitable preventive measures.
CO4	Perceive the environmental effects of human population and the implementation of welfare programs.
CO5	Recall the environmental ethics and legal provisions.

TEXT BOOKS

- 1. Henry, JG & Heinke, GW, "Environmental Science and Engineering", 2nd Edition, PHI Learning Private limited, New Delhi, 2011.
- 2. Kaushik, A & Kaushik, CP, Environmental Science and engineering", 3rd Edition, New Age International (P) Limited, New Delhi, 2009.
- 3. Erach Bharucha, "Text book for Environmental sciences for Undergraduate courses", UGC, 2004.

- 1. Masters, GM & Ela, WP, "Introduction to Environmental Engineering and Science", 3rd Edition, PHI Learning Private limited, New Delhi, 2009.
- 2. Encyclopedia of environmental ethics and philosophy. Available at www.gmu.ac.ir/download/booklibrary/e-library/Encyclopaedia of Environmental Ethics and philosophy.pdf.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	2	3	3	-	-	-	2	1	-	-	3
CO2	3	3	2	2	-	2	3	-	-	-	-	2	1	-	-	3
CO3	3	3	2	2	-	2	3	-	-	-	-	2	1	-	-	3
CO4	3	3	2	2	-	2	3	-	-	-	-	2	1	-	-	3
CO5	3	3	2	2	-	2	3	3	-	-	-	2	1	-	-	3

YEAR	I	SEMESTER	II	L	T	P	C
COURSE CODE / COURSE TITLE	191MA20	I / ENGINEERING MATHI	EMATICS II	2	2	0	3

- ✓ To understand double and triple integration and enable them to find area and volume using multiple integrals.
- ✓ To know the basics of vector calculus comprising gradient, divergence and curl and line, surface and volume integrals.
- ✓ To understand analytic functions of complex variables and conformal mappings.
- ✓ To know the basics of residues, complex integration and contour integration.
- ✓ To understand Laplace transform and use it to represent system dynamic models and evaluates their time responses.

SYLLABUS

UNIT - I MULTIPLE INTEGRALS 12

Double integration, Cartesian and polar coordinates, Change of order of integration, Triple integration In cartesian coordinates.

UNIT - II VECTOR CALCULUS 12

Gradient, divergence and curl, Directional derivative, Ir-rotational and solenoidal vector fields, Simple problems on Vector differentiation, Vector integration, Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (excluding proofs).

UNIT - III ANALYTIC FUNCTION 12

Functions of a complex variable, Analytic functions, Necessary conditions, Cauchy Riemann equations in Cartesian coordinates and sufficient conditions (excluding proofs), Properties of analytic function, Construction of analytic function by Milne Thomson method, Conformal mapping: w = z + c, cz, 1/z, z^2 bi-linear transformation.

UNIT - IV COMPLEX INTEGRATION 12

Statement and applications of Cauchy's integral theorem and Cauchy's integral formula (excluding proofs), Taylor's and Laurent's series expansions, Singularities, Residues, Cauchy's residue theorem (excluding proof), Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

UNIT - V LAPLACE TRANSFORM 12

Laplace transform, Sufficient condition for existence, Transform of elementary functions, Basic properties, Transforms of unit step function and impulse functions, Transform of periodic functions. Inverse Laplace transform, Statement of Convolution theorem, Initial and final value theorems, Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

COURSE OUTCOMES On completion of the course, students will be able to CO1 Evaluate multiple integrals using change of variables. CO2 Apply various integral theorems for solving engineering problems involving cubes and rectangular parallelepipeds. CO3 Construct analytic functions of complex variables and transform functions using conformal mappings. CO4 Estimate the real and complex integrals over suitable closed paths and contours. CO5 Compute linear differential equations using Laplace transform techniques

TEXT BOOKS

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, Delhi, 42nd Edition, 2012.
- 2. Kreyzig E., "Advanced Engineering Mathematics", John Wiley & Sons (Asia), Pvt, Ltd., Singapore, 10th Edition, 2010.

- 1. Arunachalam T. and Sumathi K, "Engineering Mathematics II", Sri Vignesh Publications, Coimbatore, Third Edition, 2011.
- 2. Kandasamy P., Thilagavathy K. and Gunavathy K, "Engineering Mathematics", S. Chand & Co., New Delhi, 2008.
- 3. Veerarajan T, "Engineering Mathematics" (for First Year), Tata McGraw Hill, Pub. Co. Ltd., New Delhi, Revised Edition, 2007.
- 4. Venkataraman M.K, "Engineering Mathematics", Volume II, The National Pub. Co., Chennai, 2003.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	-	-	-	-	-	-	1	1	-	-	3
CO2	3	3	2	2	2	-	-	-	-	_	-	1	1	-	-	3
CO3	3	3	2	2	2	-	-	-	-	_	-	1	1	-	-	3
CO4	3	3	2	2	2	-	-	-		-	-	1	1	-	-	3
CO5	3	3	2	2	2	ı	-	ı	-	-	-	1	1	-	-	3

COURSE TITLE B1PH203 / MATERIAL SCIENCE FOR ELECTRICAL ENGINEERING COURSE TITLE COURSE OBJECTIVES To introduce the essential principles of materials science for Electrical engineering applications and become proficient in magnetic, optical and new engineering properties of materials SYLLABUS UNIT - I SELECTRICAL PROPERTIES OF MATERIALS 9 Conduction in metals- Mobility and Conductivity. Classical free electron theory of metals-Widemaan Franz Law -Band theory of solids -Classification of solids on basis of band theory- Fermi distribution function-Effect of temperature on Fermi function Density of energy states-Carrier concentration in metals UNIT - II SELECTRONIC MATERIALS 9 Classification of semiconductors-Intrinsic, Extrinsic, derivation of carrier concentration in intrinsic and extrinsic semiconductor Fermi Level and its variation with temperature and impurity concentration-Determination of band gap-Hall effect-Determination of Hall coefficient-Applications UNIT - III DIELECTRIC AND MAGNETIC MATERIALS 9 Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization-Uses of dielelctrics (Capacitors and Transformers)-Origin of magnetic moment - Bohr magneton - Classification of magnetic materials (Dia, Para and Ferro magnetism) - Domain theory-Hysteresis-soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials-carrier generation and recombination processes-Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - Laser diodes - Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the cours	YEAR	I	SEMESTER	II	L	T	P	C
COURSE TITLE COURSE OBJECTIVES To introduce the essential principles of materials science for Electrical engineering applications and become proficient is magnetic, optical and new engineering properties of materials SYLLABUS UNIT - I ELECTRICAL PROPERTIES OF MATERIALS 9 Conduction in metals- Mobility and Conductivity,- Classical free electron theory of metals-Widemaan Franz Law -Band theory of Solids - Classification of solids on basis of band theory- Fermi distribution function-Effect of temperature on Fermi function Density of energy states—Carrier concentration in metals UNIT - II ELECTRONIC MATERIALS 9 Classification of semiconductors-Intrinsic, Extrinsic,- derivation of carrier concentration in intrinsic and extrinsic semiconductors Fermi Level and its variation with temperature and impurity concentration-Determination of band gap-Hall effect—Determination of Hall coefficient—Applications UNIT - III DIELECTRIC AND MAGNETIC MATERIALS 9 Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization- Uses of dielelctrics (Capacitors and Transformers)-Origin of magnetic moment — Bohr magneton — Classification angenetic materials (Dia, Para and Ferro magnetism)— Domain theory—Hysteresis—soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials—carrier generation and recombination processes—Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode — solar cell - LED — Organic LED — Laser diodes — Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish					3	0	n	3
To introduce the essential principles of materials science for Electrical engineering applications and become proficient is magnetic, optical and new engineering properties of materials SYLLABUS UNIT - I	COURSE TITLE				3	U	U	
Targetic, optical and new engineering properties of materials SYLLABUS UNIT - I ELECTRICAL PROPERTIES OF MATERIALS 9 Conduction in metals- Mobility and Conductivity, - Classical free electron theory of metals- Widemaan Franz Law -Band theory of Solids - Classification of solids on basis of band theory - Fermi distribution function-Effect of temperature on Fermi function Density of energy states—Carrier concentration in metals UNIT - II ELECTRONIC MATERIALS 9 Classification of semiconductors-Intrinsic, Extrinsic, derivation of carrier concentration in intrinsic and extrinsic semiconductors Fermi Level and its variation with temperature and impurity concentration-Determination of band gap-Hall effect—Determination of Hall coefficient—Applications UNIT - III DIELECTRIC AND MAGNETIC MATERIALS 9 Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization - Uses of dielelctrics (Capacitors and Transformers)—Origin of magnetic moment — Bohr magneton — Classification of magnetic materials (Dia, Para and Ferro magnetism)—Domain theory—Hysteresis—soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials—carrier generation and recombination processes—Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode — solar cell - LED — Organic LED — Laser diodes — Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties—Types—Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)—Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in								
UNIT - I ELECTRICAL PROPERTIES OF MATERIALS 9 Conduction in metals- Mobility and Conductivity, Classical free electron theory of metals-Widemaan Franz Law -Band theory of Solids - Classification of solids on basis of band theory- Fermi distribution function-Effect of temperature on Fermi function Density of energy states—Carrier concentration in metals UNIT - II ELECTRONIC MATERIALS 9 Classification of semiconductors-Intrinsic, Extrinsic,- derivation of carrier concentration in intrinsic and extrinsic semiconductors Fermi Level and its variation with temperature and impurity concentration-Determination of band gap-Hall effect—Determination of Hall coefficient—Applications UNIT - III DILLECTRIC AND MAGNETIC MATERIALS 9 Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization - Uses of dieleletrics (Capacitors and Transformers)—Origin of magnetic moment — Bohr magneton — Classification of magnetic materials (Dia, Para and Ferro magnetism)—Domain theory—Hysteresis—soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials—carrier generation and recombination processes—Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties—Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their propertie				ical engineering a	pplicatio	ns and b	ecome p	roficient i
Conduction in metals- Mobility and Conductivity,- Classical free electron theory of metals-Widemaan Franz Law -Band theory of Solids - Classification of solids on basis of band theory- Fermi distribution function-Effect of temperature on Fermi function Density of energy states—Carrier concentration in metals UNIT - II ELECTRONIC MATERIALS 9 Classification of semiconductors-Intrinsic, Extrinsic,- derivation of carrier concentration in intrinsic and extrinsic semiconductors Fermi Level and its variation with temperature and impurity concentration-Determination of band gap-Hall effect—Determination of Hall coefficient—Applications UNIT - III DIELECTRIC AND MAGNETIC MATERIALS 9 Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization- Uses of dielelctrics (Capacitors and Transformers)-Origin of magnetic moment — Bohr magneton — Classification and agnetic materials (Dia, Para and Ferro magnetism)— Domain theory—Hysteresis—soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials—carrier generation and recombination processes-Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode—solar cell—LED—Organic LED—Laser diodes—Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology.	magnetic, optical	and new engine	~					
Conduction in metals- Mobility and Conductivity,- Classical free electron theory of metals-Widemaan Franz Law -Band theory Solids - Classification of solids on basis of band theory- Fermi distribution function-Effect of temperature on Fermi function Density of energy states—Carrier concentration in metals UNIT - II								
Solids -Classification of solids on basis of band theory- Fermi distribution function-Effect of temperature on Fermi function Density of energy states—Carrier concentration in metals UNIT - II								-
Density of energy states—Carrier concentration in metals UNIT - II								
UNIT - II ELECTRONIC MATERIALS 9 Classification of semiconductors-Intrinsic, Extrinsic, - derivation of carrier concentration in intrinsic and extrinsic semiconductors Fermi Level and its variation with temperature and impurity concentration-Determination of band gap-Hall effect—Determination of Hall coefficient—Applications UNIT - III DIELECTRIC AND MAGNETIC MATERIALS 9 Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization- Uses of dielectrics (Capacitors and Transformers)-Origin of magnetic moment — Bohr magneton — Classification of magnetic materials (Dia, Para and Ferro magnetism) — Domain theory—Hysteresis—soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials-carrier generation and recombination processes—Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode — solar cell - LED — Organic LED — Laser diodes — Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. TEXT BOOKS				on function-Effect	of temp	erature	on Fern	ii function
Classification of semiconductors-Intrinsic, Extrinsic,- derivation of carrier concentration in intrinsic and extrinsic semiconductors Fermi Level and its variation with temperature and impurity concentration-Determination of band gap-Hall effect—Determination of Hall coefficient—Applications UNIT - III		arrier concentra						0
Fermi Level and its variation with temperature and impurity concentration-Determination of band gap-Hall effect—Determination of Hall coefficient—Applications UNIT - III DIELECTRIC AND MAGNETIC MATERIALS 9 Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization-Uses of dielectrics (Capacitors and Transformers)-Origin of magnetic moment - Bohr magneton - Classification of magnetic materials (Dia, Para and Ferro magnetism) - Domain theory—Hysteresis—soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials—carrier generation and recombination processes-Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - Laser diodes - Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology.								
of Hall coefficient—Applications UNIT - III								
Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization- Uses of dielelctrics (Capacitors and Transformers)-Origin of magnetic moment - Bohr magneton - Classification of magnetic materials (Dia, Para and Ferro magnetism)- Domain theory-Hysteresis- soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials-carrier generation and recombination processes-Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - Laser diodes - Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology.			ature and impurity concentration-	Determination of	bana gap	o-Haii ei	rect–De	terminatio
Electric Susceptibility-Dielectric Constant-Electronic, Ionic and Orientation - Frequency and Temperature dependence of Polarization- Uses of dieleIctrics (Capacitors and Transformers)-Origin of magnetic moment - Bohr magneton - Classification of magnetic materials (Dia, Para and Ferro magnetism) - Domain theory-Hysteresis - soft and hard magnetic materials UNIT - IV			IEI ECTDIC AND MACNET	TIC MATEDIA	TC			0
Polarization- Uses of dieleIctrics (Capacitors and Transformers)-Origin of magnetic moment – Bohr magneton – Classification of magnetic materials (Dia, Para and Ferro magnetism) – Domain theory—Hysteresis – soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials—carrier generation and recombination processes-Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS						mparati	ıra danı	
magnetic materials (Dia, Para and Ferro magnetism) — Domain theory—Hysteresis — soft and hard magnetic materials UNIT - IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials—carrier generation and recombination processes-Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode — solar cell - LED — Organic LED — Laser diodes — Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors—Properties—Types—Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS								
Classification of optical materials—carrier generation and recombination processes—Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode — solar cell - LED — Organic LED — Laser diodes — Optical data storage techniques. UNIT - V								mication (
Classification of optical materials—carrier generation and recombination processes-Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques. UNIT - V								9
metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques. UNIT - V NEW ENGINEERING MATERIALS 9 Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS						and sca	ttering o	
Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS								
Metallic Glasses-Types of metallic glasses-Preparation-Properties and applications-Superconductors- Properties- Types- Hig Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS			1 7, 1					
Temperature Superconductor and Applications-Shape memory alloys (SMA)-Application of SMA COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS	UNIT - V		NEW ENGINEERING MA	TERIALS				9
COURSE OUTCOMES On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS						s- Prope	rties- T	ypes- Hig
On completion of the course, students will be able to CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS	Temperature Superconduct	or and Applicat	ions-Shape memory alloys (SMA))-Application of S	MA			
CO1 Apply the Electron theory of solids to distinguish the electrical and thermal conductivity of various materials. CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS			COURSE OUTCOM	ES				
CO2 Identify the importance of semiconductors and its devices towards recent trends in engineering. CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS	On completion of the cours	se, students will	be able to					
CO3 Categorize dielectric and magnetic materials and knowing their properties and applications in current technology. CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS	CO1 Apply the Electr	on theory of sol	ids to distinguish the electrical and	d thermal conduct	ivity of v	arious n	naterials	
CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS	CO2 Identify the impo	ortance of semic	conductors and its devices towards	recent trends in e	engineerii	ng.		
CO4 Recognize the optical materials used in various optoelectronic devices. CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS	CO3 Categorize diele	ctric and magne	tic materials and knowing their pr	operties and appli	cations in	current	technol	ogy.
CO5 Demonstrate the new engineering materials and exposure of superconductor in current technology. TEXT BOOKS				<u> </u>				
TEXT BOOKS			<u> </u>		ent techno	ology.		-
		<u>U</u>						
1. Some Same Injures, S. C. Imagoni Danion, 1 to 11 150 international I actioner, included	1. Solid State Physics S O	Pillai.6thEdition		India.2009				
2. Materials Science and Engineering- An Introduction, William D. Callister, 6th Edition, John Wiley, USA, 2004.					Wiley, U	SA,200	4.	

1. The Science and Engineering of Materials, Donald R.Askland and Pradeep P.Phule, 5thEdition, Cengage Learning Publisher, USA, 2006

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	-	-	-	ı	-	-	1	1	-	-	3
CO2	3	3	2	2	2	-	-	-	-	-	-	1	1	-	-	3
CO3	3	3	2	2	2	-	-	-	-	-	-	1	1	-	-	3
CO4	3	3	2	2	2	-	-	-		-	-	1	1	-	-	3
CO5	3	3	2	2	2	-	-	-	-	-	-	1	1	-	-	3

YEAR	I	SEMESTER	II	L	T	P	C
COURSE CODE /	191CS221	/ PROBLEM SOLVING AN	D PYTHON	2	Λ	0	2
COURSE TITLE		PROGRAMMING		3	U	U	3

- ✓ To know the basics of algorithmic problem solving.
- ✓ To read and write simple Python programs.
- ✓ To develop Python programs with conditionals and loops.
- ✓ To define Python functions and call them.
- ✓ To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

SYLLABUS

UNIT - I ALGORITHMIC PROBLEM SOLVING 9

Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion) Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, Guess an integer number in a range, Towers of Hanoi.

9

UNIT - II DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT - III CONTROL FLOW, FUNCTIONS 9

Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT - IV LISTS, TUPLES, DICTIONARIES 9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, merge sort, histogram.

UNIT - V FILES, MODULES, PACKAGES 9

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

COURSE OUTCOMES On completion of the course, students will be able to CO1 Develop algorithmic solutions for simple computational problems. CO2 Write and execute simple python programs. CO3 Implement Python program with control structures and function for solving problems. CO4 Represent compound data using Python list, tuples, and dictionaries. CO5 Read and write data from/to files in Python programs.

TEXT BOOKS

- 1. Allen B.Downey, ``ThinkPython:HowtoThinkLikeaComputerScientist'',2ndedition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016(http://greenteapress.com/wp/think-python/)
- 2. Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

- 1. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 2. Timothy A. Budd, —Exploring Python, Mc-Graw Hill Education (India) Private Ltd., 2015.
- 3. John V Guttag,—Introduction to Computation and Programming Using Python",Revised and expanded Edition, MIT Press , 2013

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	2	3	3	-	-	-	2	3	3	1	3
CO2	3	3	2	2	ı	2	3	-	-	-	-	2	3	2	1	3
CO3	3	3	2	2	1	2	3	-	-	-	-	2	3	2	1	3
CO4	3	3	2	2	ı	2	3	-	-	-	-	2	3	2	1	3
CO5	3	3	2	2	-	2	3	3	-	-	_	2	3	2	1	3

						_	-
YEAR	I	SEMESTER	II	L	T	P	C
COURSE CODE /	19	1EC211/ELECTRONIC		3	0	0	3
COURSE TITLE		AND CIRCUITS					
		COURSE OBJEC	CTIVES				
✓ To understand the							
		cteristics of BJT and FET tran	sistors.				
✓ To study various t ✓ To learn positive a		y and power devices					
v 10 learn positive a	ind negative re	SYLLAB	TIC				
UNIT - I		SEMICONDUCT					9
	aharaataristis	es, Terminal characteristics of		diodo or	d applie	otions	-
		ltage doubler - Schottky-Barri					Diode logic
UNIT - II	ing circuits vo	TRANSISTOR A		oto Groue	Tunner	uroue.	9
	Three modes of	of configuration—Currents in T		tween α,	3& γ– lo	oad line-	
as an amplifier (CE)-h para					•		
UNIT - III		FIELD EFFECT T	TRANSISTOR				9
		el and P Channel - Drain and			ications	of JFE	Γ-MOSFET
		d depletion mode-Comparison					
UNIT - IV		POWER DEVICES AND					9
	er BJT, Power	MOSFET, IGBT Heat sinks a	nd junction temperatur	e, LED, 1	LCD, Pł	oto tran	sistor, Opto
Coupler, Solar cell, CCD.	Tell			ODC			0
UNIT - V		EEDBACK AMPLIFIERS ge/current, series/shunt feedba			amit	omion for	9
		olpitts and crystal oscillators.	ck. Positive feedback -	-Dark na	isen cm	erion io	OSCIIIation
Thase shift Well Bridge	Tiuriej e	COURSE OUT	COMES				
On completion of the cours	e, students wil		CONILIS				
CO1 Analyze PN junc	tions in semic	onductor devices under variou	s conditions				
, ,		of current flow in BJT with 0		rations			
	acteristics of N	MOS and FET amplifier					
CO3 Realize the char	acteriotics of r						
		ower and display devices.					
CO4 Discuss the chara	acteristics of p	ower and display devices. se in design and analysis of fee	dback amplifiers and o	scillator	S.		

- 1. Sedra and Smith, "Micro Electronic Circuits"; Sixth Edition, Oxford University Press, 2011.
- 2. Donald A Neaman, "Semiconductor Physics and Devices", Third Edition, TataMcGrawHillInc.2007.

- 1. Robert L. Boylestad and Louis Nasheresky,—Electronic Devices and Circuit Theory,10th Edition, Pearson Education / PHI, 2008
- 2. David A.Bell, —Electronic Devices and Circuits, Fifth Edition, Oxford University Press, 2008.
- 3. Salivahanan. S, SureshKumar. N, Vallavaraj.A, —Electronic Devices and circuits, Third Edition, TataMcGraw-Hill, 2008.
- 4. Malvino, Electronic Devices and Circuits, PHI, 2007.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	-	-	-	-	-	-	1	1	-	-	3
CO2	3	3	2	2	2	-	-	-	-	-	-	1	1	-	-	3
СОЗ	3	3	2	2	2	-	-	-	-	-	-	1	1	-	-	3
CO4	3	3	2	2	2	-	-	-		-	-	1	1	-	-	3
CO5	3	3	2	2	2	-	-	-	-	-	ı	1	1	-	-	3

YEAR	I	SEMESTER	II	\mathbf{L}	Т	P	C
COURSE CODE /	1	91EE221 / ELECTRIC CIRC	CUIT	2	2	0	2
COURSE TITLE		ANALYSIS		2	2	0	3
		COURSE OBJECTIV	ES				
✓ To introduce elec	etric circuits an	d its analysis					
✓ To impart knowl	edge on solving	g circuit equations using network the	heorems				
✓ To introduce the	phenomenon o	f resonance in coupled circuits					
✓ To educate on obtaining	taining the tran	sient response of circuits					
✓ To introduce Pha	sor diagrams a	nd analysis of three phase circuit					
		SYLLABUS					
UNIT - I		DC, AC FUNDAMEN	TALS				9
		ircuits- Voltage and Current Div					
		rd Terminologies and Parameters-	-Inductance, Capa	citance, l	mpedan	ce, Adn	nittance and
Susceptance – Phasor diagr	am– Illustrati v						
UNIT - II		NETWORK THEOR					9
		ems-Superposition-Thevenin-No	rton–Maximum P	ower Tra	nsfer-M	illman -	- Maximum
Power Transfer – Substituti							
UNIT - III		ALYSIS OF THREE PHA					9
		h Star and Delta Connected loads	 Balanced and U 	nbalance	d Circui	ts–Phas	or diagram–
Power triangle –Power and							
UNIT - IV	RE	SONANCE AND COUPLI	ED CIRCUITS	8			9
Resonance circuits-Tank C	ircuits-Mutual	Inductance–Coefficient of Couplin	ng-Dotrules–Tune	d Circuits	3		
UNIT - V		TRANSIENT ANAL	YSIS				9
Step and sinusoidal respons	se for RL, RC&	RLC circuits for DC and AC inpu	ıts				
		COURSE OUTCOM	ES				
On completion of the cours	e, students will	be able to					
CO1 Classify various	elements and it	s need.					
CO2 Impart knowledg	e on solving ci	rcuits using network theorems.					
CO3 Analyze three ph	ase circuits.						
CO4 Explain the phen	omenon of reso	onance in coupled circuits.					
CO5 Distinguish the t	ransient respon	se and steady state response of circ	cuits.				
<u> </u>		TEXT BOOKS					
1. A.Sudhakar,S.P.Shyamn	nohan,"Circuits	&Networks",TataMcGrawHill,thi	rdEdition, 2015.				
•		10. 10. 11. (5. 1.				0.1	

- 2. William H. Hayt, Jr, Jack E.Kemmerly and Steven M. Durbin, "Engineering circuits Analysis", TMH publishers, 8th edition, New Delhi, (2015).
- 3. Paranjothi SR, "Electric Circuits Analysis", New Age International Ltd., NewDelhi, (2012)

- 1. Charles K.Alexander, Mathew N.O.Sadik, "Fundamentals of Electric Circuits" TataMcGraw-Hill,, 2017.
- 2. Problems and Solutions of Electrical Circuit Analysis, R.K.Mehta&A.K.Mal, CBS Publishers, 2015
- 3. C.L. Wadhwa, "Electric Circuit Analysis", New Age International (P)Ltd., Second Edition. 2009.
- 4. Joseph A.Edminister, Mahmood Nahri, "Electric circuits", Schaum's Series, TataMcGraw-Hill, New Delhi, 2009.
- 5. Chakrabarti A, "TextBook of Circuit Theory and Analysis" Prantice Hall Publications, NewDelhi, 2005.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2	2	2	-	-	-	-	-	-	-	2	3	3	1	1
CO2	3	3	1	1	-	-	-	-	-	-	-	3	3	3	2	1
CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3	2	1
CO4	2	2	2	2	-	-	1	-	-	-	-	2	3	3	1	1
CO5	3	3	2	2	-	-	-	-	-	-	-	3	3	3	2	1

	SE CODE / SE TITLE	191CS21A / PROBLEM SOLVING AND PYTHON PROGRAMMING LAB	0	0	2	1
		COURSE OBJECTIVES				
		debug simple Python programs.				
		non programs with conditionals and loops.				
		structuring Python programs.				
		nd data using Python lists, tuples, and dictionaries.				
•	Read and write da	a from/to files in Python.				
		LIST OF EXPERIMENTS				
1	Compute the GC	D of two numbers.				
2	Find the square r	oot of a number (Newton's method)				
3		ower of a number)				
4	Find the maximu	m of a list of numbers				
5	Linear search and	l Binary search				
6	Selection sort ,In	sertion sort				
7	Merge sort					
8	First n prime nur					
9	Multiply matrice					
10	Programs that tal	te command line arguments(word count)				
11		quent words in a text read from a file				
12	-	l orbits in Pygame				
	Simulate bouncing	ng ball using Pygame				
13	PLATFORM N					
	Python3 interpre	ter for Windows/Linux				
		COURSE OUTCOMES				
		e, students will be able to				
CO1		using conditionals and loops in Python.				
CO2		programs by defining functions.				
CO3	Represent lists,	Tuples and dictionaries for compound data.				

II

L

T

P

C

YEAR

Ι

SEMESTER

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	-	-	-	-	-	-	-	-	-	1	-	-	3
CO2	3	2	2	-	-	-	-	-	-	-	-	-	2	-	-	3
CO3	3	2	2	-	-	-	-	-	-	-	-	-	2	-	-	3

YEAR		I	SEMESTER	II	L	T	P	С
COURSE (CODE /	191MF	E21A / ENGINEERING PR	ACTICES		_	_	
COURSE 7			LABORATORY		0	0	4	2
			COURSE OBJECTI	VES				
✓ To	provide expos	sure to the stu	dents with hands on experien	ce on various bas	sic engin	eering	practice	s in Civil,
Med	hanical, Electi	rical and Electro	onics Engineering.				-	
			LIST OF EXPERIME	ENTS				
		G	GROUP A (CIVIL & MECI	HANICAL)				
CIVIL EN	GINEERIN(G PRACTICE						
BUILDING	SS:							
1 Stu	idy of plumbin	ng and carpentry	components of residential and i	ndustrial buildings	, Safety a	spects.		
PLUMBIN	G WORKS:							
1 Stu	ıdy of pipeline	joints, its locat	ion and functions: valves, taps, c	ouplings, unions, r	educers, a	and elbo	ws in ho	ousehold
fitt	ings.							
			rements for pumps and turbines.					
			tches for water supply and sewa					
4		se: Basic pipe co	onnections – Mixed pipe materia	l connection – Pipe	e connecti	ions wit	h differe	ent joining
CO	mponents.	f plumbin a mari	irements of high-rise buildings.					
		POWER TO	<u> </u>					
			rs, windows and furniture.					
			joints by sawing, planning and o	nutting				
		NEERING PI		atting.				
WELDING		TEERING II	ATCTICES					
		ıtt ioints lan ioi	nts and T- joints by Shielded me	tal arc welding				
	s welding prac		ins and 1 Johns by Shielded he	tar are weraing.				
BASIC MA								
		and Taper turnin	lg.					
	illing Practice.							
SHEET M	ETAL WOR	K						
1 Fo	rming & Bend	ling.						
		Trays and funne	els.					
	fferent type of							
		ORY PRACT	FICES					
	udy of centrifu							
	idy of air cond							
	TRATION O							
l he	aded bolt.		raging, setting down and bending	•				
	undry operation ting and V-fitti		preparation for gear and step con-	e pulley. Fitting – I	Exercises	– Prepa	ration o	f square
			UP B (ELECTRICAL & El	LECTRONICS)				
ELECTRI	CAL ENGIN	EERING PR	ACTICES					
1 Re	sidential house	e wiring using s	witches, fuse, indicator, lamp an	d energy meter.				
	orescent lamp							
	air case wiring							
			ities – voltage, current, power &	power factor in RI	C circuit			
			ngle phase energy meter.					
•			rth of electrical equipment.					
		INEERING P				C	L	1 (1
1	•	-	and equipments - Resistor, colo	ur coding measurer	nent of A	C signa	parame	eter (peak-
pe		, frequency) usin						
			EX-OR and NOT.					
3 Ge	neration of Cl	ock Signal						
	_							
	ldering practic		s Devices and Circuits – Using g	general purpose PC	В.			

S.NO DESCRIPTION OF THE EQUIPMENT Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 1 Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 2 Carpentry vice (fitted to work bench) 3 Standard woodworking tools 4 Models of industrial trusses, door joints, furniture joints 5 Each Power Tools: a) Rotary Hammer b) Demolition Hammer 2 Nos 5 c) Circular Saw 3 Power of the planter b) Demolition Hammer 2 Nos c) Circular Saw 4 Power of the planter c) Nos d) Planer c) Nos Demolition Hammer 1 Jigsaw MECHANICAL MECHANICAL 5 Nos MECHANICAL 5 Nos Welding booth with exhaust facility 5 Nos Welding booth with exhaust facility 5 Nos Welding accessories like welding shield, chipping hammer, wire brush, etc., 5 Nos Centre lathe Centre lathe 1 Are welding transformer with cables and holders 5 Centre lathe 2 Nos 6 Hearth furnace, anvil and smithy tools Centre lathe 2 Nos 8 Power Tool: Angle Grinder 2 Nos 8 Power Tool: Angle Grinder 2 Nos 9 Study-Purpose items: Centrifugal pump, air-conditioner ELECTRICAL 1 Assorted electrical components for house wiring 1 S Nos 2 Electrical measuring instruments 1 D Nos 4 Megger (250V/500V) 1 Nos Power Tools: 3 Study purpose items: Fron box, fan and regulator, emergency lamp 1 Nos Power Tools: 3 Study purpose items: Fron box, fan and regulator, emergency lamp 1 Nos Power Tools: 3 Study purpose items: Fron box, fan and regulator, emergency lamp 1 Nos Power Tools: 3 Study purpose items: Fron box, fan and regulator, emergency lamp 1 Nos Power Tools: 3 Study purpose items: Fron box, fan and regulator, emergency lamp 1 Nos Power Tools: 3 Study purpose items: Fron box, fan and regulator, emergency lamp 1 Nos Power Tools: 3 Study purpose items: Fron box, fan and regulator, emergency lamp 1 Nos Power Tools: 1 Soldering guns 2 Nos 1 Nos 1 Nos 2		LIST OF EXPERIMENTS	
S. NO DESCRIPTION OF THE EQUIPMENT QUANTITY REQUIRED Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 2 Carpentry vice (fitted to work bench) 3 Standard woodworking tools 4 Models of industrial trusses, door joints, furniture joints Power Tools: a) Rotary Hammer b) Demolition Hammer c) Nos c) Circular Saw d) Planer c) Hand Drilling Machine f) Jigsaw MECHANICAL Are welding transformer with cables and holders Welding booth with exhaust facility 3 Welding accessories like welding shield, chipping hammer, wire brush, etc., 4 Oxygen and accetylene gas cylinders, blow pipe and other welding outfit. 5 Nos 6 Hearth furnace, anvil and smithy tools 7 Moulding table, foundry tools 8 Power Tool: Angle Grinder 9 Study-Purpose items: Centrifugal pump, air-conditioner LECTRICAL 1 Assorted electrical components for house wiring Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos Megger (250V:500V) Power Tools: 3 Assorted electronic components for making circuits 5 Nos ELECTRONICS On completion of the course, students will be able to COURSE OUTCOMES On completion of the course, students will be able to COURSE OUTCOMES On completion of the course, students will be able to COURSE OUTCOMES On completion of the course, students will be able to COURSE OUTCOMES On completion of the course, students will be able to COURSE OUTCOMES On completion of the course, students will be able to COURSE OUTCOMES On completion of the course, students will be able to		REQUIREMENTS FOR A BATCH OF 30 STUD	ENTS
S. NO			
Intervible pipes, couplings, unions, elbows, plugs and other fittings.	S. NO		QUANTITY REQUIRED
2 Carpentry vice (fitted to work bench) 3 Standard woodworking tools 4 Models of industrial trusses, door joints, furniture joints 5 Each Power Tools: a) Rotary Hammer b) Demolition Hammer 2 Nos 5 c) Circular Saw d) Planer 2 Nos d) Planer 2 Nos e) Hand Drilling Machine 1 Jigsaw MECHANICAL 1 Are welding transformer with cables and holders 2 Welding booth with exhaust facility 3 Welding accessories like welding shield, chipping hammer, wire brush, etc., 5 Nos Welding accessories like welding shield, chipping hammer, wire brush, etc., 5 Nos 6 Hearth furnace, anvil and smithy tools 7 Moulding table, foundry tools 2 Nos Power Tool: Angle Grinder 2 Nos 2 Study-Purpose items: Centrifugal pump, air-conditioner ELECTRICAL 1 Assorted electrical components for house wiring 2 Electrical measuring instruments 3 Study purpose items: To hox, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos 5 Can Bangle Grinder 2 Nos 6 Hearth furnace, and surface of the surface o	1		15 Sets
3 Standard woodworking tools 4 Models of industrial trusses, door joints, furniture joints 5 Each Power Tools: a) Rotary Hammer b) Demolition Hammer 2 Nos c) Circular Saw 2 Nos d) Planer e) Hand Drilling Machine 2 Nos e) Hand Drilling Machine 3 Nos f) Jigsaw MECHANICAL 1 Are welding transformer with cables and holders 2 Welding booth with exhaust facility 3 Welding accessories like welding shield, chipping hammer, wire brush, etc., 5 Nos 3 Welding accessories like welding shield, chipping hammer, wire brush, etc., 5 Nos 5 Centre lathe 2 Nos 6 Hearth furnace, anvil and smithy tools 7 Moulding table, foundry tools 7 Moulding table, foundry tools 8 Power Tool: Angle Grinder 9 Study-Purpose items: Centrifugal pump, air-conditioner Die Electrical measuring instruments 10 Nos 2 Electrical measuring instruments 10 Nos 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos 5 Qia Range Finder 2 Nos 6 (a) Range Finder 2 Nos 7 ELECTRONICS 1 Soldering guns 10 Nos 10 Nos 11 Nos 12 Nos 13 Study purpose items: Telephone, FM radio, low-voltage power supply 1 COURSE OUTCOMES 1 Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	2	11 1 0	15 Nos
4 Models of industrial trusses, door joints, furniture joints Power Tools: a) Rotary Hammer b) Demolition Hammer 2 Nos c) Circular Saw d) Planer 2 Nos d) Planer 2 Nos e) Hand Drilling Machine 2 Nos e) Hand Drilling Machine 3 Nos ELECTRICAL 1 Are welding transformer with cables and holders 3 Nos Welding accessories like welding shield, chipping hammer, wire brush, etc., 5 Nos Welding accessories like welding shield, chipping hammer, wire brush, etc., 5 Nos 4 Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos 5 Centre lathe 2 Nos 6 Hearth furnace, anvil and smithy tools 2 Nos 7 Moulding table, foundry tools 2 Nos 9 Study-Purpose items: Centrifugal pump, air-conditioner ELECTRICAL 1 Assorted electrical components for house wiring 2 Electrical measuring instruments 10 Nos 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos Power Tools: (a) Range Finder (b) Digital Live-wire detector 2 Nos ELECTRONICS 1 Soldering guns 10 Nos 3 Small PCBs 10 Nos 4 Multimeters 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	3		15 Sets
Power Tools: a) Rotary Hammer 2 Nos b) Demolition Hammer 2 Nos 5	4		5 Each
Solution	5	Power Tools: a) Rotary Hammer b) Demolition Hammer c) Circular Saw d) Planer	2 Nos 2 Nos 2 Nos
1 Are welding transformer with cables and holders 2 Welding booth with exhaust facility 3 Nos 3 Welding accessories like welding shield, chipping hammer, wire brush, etc., 4 Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos 5 Centre lathe 2 Nos 6 Hearth furnace, anvil and smithy tools 7 Moulding table, foundry tools 2 Nos 8 Power Tool: Angle Grinder 2 Nos 9 Study-Purpose items: Centrifugal pump, air-conditioner Cot Course Index (2) Nos 2 Electrical components for house wiring 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos 5 (a) Range Finder (b) Digital Live-wire detector 2 Nos 2 Nos 5 (b) Digital Live-wire detector 2 Nos 4 Multimeters 1 Soldering guns 3 Small PCBs 4 Multimeters 1 ONos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.			2 Nos
2 Welding booth with exhaust facility 3 Welding accessories like welding shield, chipping hammer, wire brush, etc., 5 Nos 4 Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos 5 Centre lathe 2 Nos 6 Hearth furnace, anvil and smithy tools 2 Nos 7 Moulding table, foundry tools 2 Nos 8 Power Tool : Angle Grinder 2 Nos 9 Study-Purpose items: Centrifugal pump, air-conditioner 0 ne Each ELECTRICAL 1 Assorted electrical components for house wiring 2 Electrical measuring instruments 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos 9 Power Tools: (a) Range Finder (b) Digital Live-wire detector 2 Nos (b) Digital Live-wire detector 2 Nos 2 Assorted electronic components for making circuits 5 O Nos 3 Small PCBs 10 Nos 4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.		MECHANICAL	
3 Welding accessories like welding shield, chipping hammer, wire brush, etc., 4 Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos 5 Centre lathe 2 Nos 6 Hearth furnace, anvil and smithy tools 7 Moulding table, foundry tools 8 Power Tool: Angle Grinder 9 Study-Purpose items: Centrifugal pump, air-conditioner ELECTRICAL 1 Assorted electrical components for house wiring 2 Electrical measuring instruments 3 Study purpose items: Iron box, fan and regulator, emergency lamp 4 Megger (250V/500V) 1 Nos Power Tools: 5 (a) Range Finder (b) Digital Live-wire detector 1 Soldering guns 2 Assorted electronic components for making circuits 5 Nos 3 Small PCBs 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to COI Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	1	Are welding transformer with cables and holders	5 Nos
4 Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 5 Centre lathe 6 Hearth furnace, anvil and smithy tools 7 Moulding table, foundry tools 8 Power Tool : Angle Grinder 9 Study-Purpose items: Centrifugal pump, air-conditioner ELECTRICAL 1 Assorted electrical components for house wiring 2 Electrical measuring instruments 10 Nos 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos Power Tools: (a) Range Finder (b) Digital Live-wire detector ELECTRONICS 1 Soldering guns 10 Nos ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 5 On Nos 3 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	2	Welding booth with exhaust facility	5 Nos
5 Centre lathe 2 Nos 6 Hearth furnace, anvil and smithy tools 2 Nos 7 Moulding table, foundry tools 2 Nos 8 Power Tool : Angle Grinder 2 Nos 9 Study-Purpose items: Centrifugal pump, air-conditioner One Each ELECTRICAL 1 Assorted electrical components for house wiring 15 Nos 2 Electrical measuring instruments 10 Nos 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos Power Tools: 5 (a) Range Finder 2 Nos (b) Digital Live-wire detector 2 Nos ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 50 Nos 3 Small PCBs 10 Nos 4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	3	Welding accessories like welding shield, chipping hammer, wire brush, etc.,	5 Nos
6 Hearth furnace, anvil and smithy tools 7 Moulding table, foundry tools 8 Power Tool : Angle Grinder 9 Study-Purpose items: Centrifugal pump, air-conditioner ELECTRICAL 1 Assorted electrical components for house wiring 2 Electrical measuring instruments 3 Study purpose items: Iron box, fan and regulator, emergency lamp 4 Megger (250V/500V) 5 (a) Range Finder (b) Digital Live-wire detector ELECTRONICS 1 Soldering guns 1 10 Nos 2 Assorted electronic components for making circuits 5 Nos 3 Small PCBs 1 Nos 4 Multimeters 1 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	4	Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	2 Nos
7 Moulding table, foundry tools 8 Power Tool : Angle Grinder 9 Study-Purpose items: Centrifugal pump, air-conditioner ELECTRICAL 1 Assorted electrical components for house wiring 2 Electrical measuring instruments 3 Study purpose items: Iron box, fan and regulator, emergency lamp 4 Megger (250V/500V) 5 (a) Range Finder (b) Digital Live-wire detector ELECTRONICS 1 Soldering guns 1 10 Nos 2 Assorted electronic components for making circuits 5 Nos 2 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos ELECTRONICS 1 ONos 1 ONos 2 Nos 2 Nos 2 Nos 3 Small PCBs 1 10 Nos 4 Multimeters 1 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	5	Centre lathe	2 Nos
8 Power Tool : Angle Grinder 2 Nos 9 Study-Purpose items: Centrifugal pump, air-conditioner One Each ELECTRICAL 1 Assorted electrical components for house wiring 15 Nos 2 Electrical measuring instruments 10 Nos 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos 5 (a) Range Finder 2 Nos (b) Digital Live-wire detector 2 Nos (b) Digital Live-wire detector 2 Nos ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 50 Nos 3 Small PCBs 10 Nos 4 Multimeters 50 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUT COMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	6	Hearth furnace, anvil and smithy tools	2 Nos
Power Tool : Angle Grinder 2 Nos 9	7	Moulding table, foundry tools	2 Nos
ELECTRICAL 1 Assorted electrical components for house wiring 2 Electrical measuring instruments 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos Power Tools: 5 (a) Range Finder (b) Digital Live-wire detector ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 5 Small PCBs 4 Multimeters 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	8	Power Tool : Angle Grinder	2 Nos
1 Assorted electrical components for house wiring 2 Electrical measuring instruments 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos Power Tools: 5 (a) Range Finder (b) Digital Live-wire detector 2 Nos (b) Digital Live-wire detector ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 5 ONos 3 Small PCBs 10 Nos 4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	9	Study-Purpose items: Centrifugal pump, air-conditioner	One Each
2 Electrical measuring instruments 3 Study purpose items: Iron box, fan and regulator, emergency lamp 1 Nos 4 Megger (250V/500V) 1 Nos Power Tools: 5 (a) Range Finder (b) Digital Live-wire detector 2 Nos (b) Digital Live-wire detector ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 50 Nos 3 Small PCBs 10 Nos 4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to CO1 Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.		ELECTRICAL	
3 Study purpose items: Iron box, fan and regulator, emergency lamp 4 Megger (250V/500V) 5 Power Tools: 5 (a) Range Finder (b) Digital Live-wire detector ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 3 Small PCBs 10 Nos 4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	1	Assorted electrical components for house wiring	15 Nos
4 Megger (250V/500V) 1 Nos Power Tools: 5 (a) Range Finder 2 Nos (b) Digital Live-wire detector 2 Nos ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 50 Nos 3 Small PCBs 10 Nos 4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	2		10 Nos
Power Tools: (a) Range Finder (b) Digital Live-wire detector ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 50 Nos 3 Small PCBs 10 Nos 4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	3	Study purpose items: Iron box, fan and regulator, emergency lamp	1 Nos
5 (a) Range Finder (b) Digital Live-wire detector 2 Nos ELECTRONICS 1 Soldering guns 10 Nos 2 Assorted electronic components for making circuits 50 Nos 3 Small PCBs 10 Nos 4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	4		1 Nos
1 Soldering guns 2 Assorted electronic components for making circuits 5 Nos 3 Small PCBs 10 Nos 4 Multimeters 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.	5	(a) Range Finder(b) Digital Live-wire detector	
2 Assorted electronic components for making circuits 3 Small PCBs 4 Multimeters 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.			10.27
3 Small PCBs 4 Multimeters 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.			
4 Multimeters 10 Nos 5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.		1 0	
5 Study purpose items: Telephone, FM radio, low-voltage power supply COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.			
COURSE OUTCOMES On completion of the course, students will be able to Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.			10 Nos
CO1 Use mechanical and civil engineering equipments to join the structures and perform basic machining operations and fabricate models in sheet metals.		COURSE OUTCOMES	
CO2 Use electrical and electronics engineering equipments to test the respective electrical and electronics components.	CO1		orm basic machining operations and
	CO2		rical and electronics components.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	1	1	1	-	-	-	1	1	3	1	1	1	1
CO2	3	3	2	1	1	1	-	_	_	1	1	3	1	1	1	1
СОЗ	3	3	2	1	1	1	_	_	_	1	1	3	1	1	1	1

YEAR		I	SEMESTER	II	L	T	P	C			
	SE CODE / SE TITLE	191E	E22A / CIRCUITS AND DE LABORATORY	VICES	0	0	4	2			
COCIL	, L TITLE		COURSE OBJECTIV	ES							
✓	To understand th	e basic laws of E	Electrical Engineering								
✓	To have hand sor										
✓	To gain concepts	of Semi-conduc	tor devices with experiments								
			LIST OF EXPERIMEN	NTS							
1	Verification of O	Ohm's and Kirchl	noff's Law								
2	Circuit analysis u										
3	Circuit analysis u	using Nodal Volt	age Method								
4	Verification of T	heorems									
5	Frequency response of RLC Series and Parallel Resonance circuits										
6	Power measurem	nent sin 3 phase c	rircuits								
7	a. Study of RL,	<i>'</i>									
,	b. Analysis of R,	L, and C effects	(independently) using MATLAF	3							
8	Characteristics of										
9	a. Analyze of BJ										
	b. Frequency resp	•									
10	Characteristics of	f JFET,MOSFET	Γ								
11	Phototransistor										
12		U	cepts and Measurement with CRO								
	b. Construct and	Analyze the open	ration of rectifier circuits using M								
			COURSE OUTCOME	ES							
	letion of the cours	,									
CO1	Acquires the Sin										
CO2			and concepts in engineering applie								
CO3	Apply the circuit	t Devices and coi	ncepts in engineering applications	S							

	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	-	-	-	-	-	-	-	-	-	1	-	-	1
CO2	3	2	2	-	-	-	-	-	-	-	-	-	2	-	-	1
СО3	3	2	2	-	-	-	-	-	-	-	-	-	2	-	-	1

		SEMESTER – III					
YEAR	II	SEMESTER	III	L	T	P	C
COURSE CODE / COURSE TITLE	191MA301 /	LINEAR ALGEBRA AND METHODS	NUMERICAL	2	2	0	3
		COURSE OBJECTIV	ES				
		groups, rings, fields which will the ctor space, linear transformations.		related	problem	IS.	

To apply the concept of inner product spaces in orthogonalization.

To provide the necessary basic concepts of a few numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.

CVI	T	AR	TIC
- 5 Y I	,	ıΑΒ	

UNIT - I **VECTOR SPACES** 10 Vector spaces – Subspaces – Linear combinations and linear system of equations – Linear independence and linear dependence –

Bases and dimensions.

UNIT - II LINEAR TRANSFORMATION

Linear transformation - Null spaces and ranges - Dimension theorem - Matrix representation of a linear transformations

INNER PRODUCT SPACES

Inner product, norms - Gram Schmidt orthogonalization process - Adjoint of linear operations - Least square approximation.

SOLUTIONS OF EQUATIONS AND EIGEN VALUE PROBLEMS **UNIT - IV**

9

Iterative method Newton - Raphson method for single variable. Solutions of Linear system by Gaussian Gauss - Jordan, Jacobi and Gauss – Seidel methods, Inverse of a matrix by Gauss – Jordan method. Eigen value of a matrix by power and Jacobi methods.

INTERPOLATION Newton forward and backward difference formulae - Lagrange's Interpolation - Newton's divided difference formula- Stirling's

COURSE OUTCOMES

On completion of the course, students will be able to

Bessel's central difference formulae.

Analyze the vectors in Rⁿ geometrically and algebraically. **CO1**

Apply the concepts of Span, Dimension and basics to various vector spaces. CO₂

Apply Gram-Schmidt process to find linearly independent vectors. CO₃

Understand the numerical techniques to find the roots of non-linear equations and solutions for system of linear **CO4** equations.

CO5 Summarize about the difference operators and use of interpolations.

TEXT BOOKS

- 1. Grewal B.S., —Higher Engineering Mathematics, Khanna Publishers, New Delhi, 44th Edition, 2017.
- 2. Datta, "Numerical Methods for Linear Control Systems" CBS Publishers. Chennai 2005
- 3. Friedberg, A.H., Insel, A.J. and Spence, L., Linear Algebra, Prentice Hall of India, New Delhi, 2004.

- 1. Lay, D.C., —Linear Algebra and its Applications, 5th Edition, Pearson Education, 2015.
- 2. Kolman, B. Hill, D.R., —Introductory Linear Algebra, Pearson Education, New Delhi, First Reprint, 2009.
- 3. James, G. —Advanced Modern Engineering Mathematics, Pearson Education, 2007.
- 4. 4. O'Neil, P.V., —Advanced Engineering Mathematics, Cengage Learning, 2007.
- 5. Yang, "Applied Numerical Methods Using MATLAB" CBS Publishers. Chennai 2005
- 6. Srinivasan, "Numerical Methods for Engineering" CBS Publishers. Chennai. 1994.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	-	-	-	-	-	3	3	3	3	2	1
CO2	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1
CO3	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1
CO4	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1
CO5	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1

YEAR	II	SEMESTER	III	L	T	P	C
COURSE CODE / COURSE TITLE	191CS312	/ OBJECT ORIENTED PRO	GRAMMING	3	0	0	3

- ✓ To understand Object Oriented Programming concepts and basic characteristics of Java
- ✓ To know the principles of packages, inheritance and interfaces
- ✓ To define exceptions and use I/O streams
- ✓ To develop a java application with threads and generics classes
- ✓ To design and build simple Graphical User Interfaces

SYLLABUS

UNIT - I INTRODUCTION TO OOP AND JAVA FUNDAMENTALS 9

Object Oriented Programming - Abstraction - objects and classes - Encapsulation- Inheritance - Polymorphism- OOP in Java - Characteristics of Java - The Java Environment - Java Source File -Structure - Compilation. Fundamental Programming Structures in Java - Defining classes in Java - constructors, methods -access specifiers - static members -Comments, Data Types, Variables, Operators, Control Flow, Arrays, Packages - Java Doc comments.

UNIT - II INHERITANCE AND INTERFACES 9

Inheritance – Super classes – sub classes – Protected members – constructors in sub classes – the Object class – abstract classes and methods – final methods and classes – Interfaces – defining an interface, implementing interface, differences between classes and interfaces and extending interfaces - Object cloning -inner classes, Array Lists – Strings

UNIT - III EXCEPTION HANDLING AND I/O 9

Exceptions - exception hierarchy - throwing and catching exceptions - built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics - Streams - Byte streams and Character streams - Reading and Writing Console - Reading and Writing Files

UNIT - IV MULTI THREADING AND GENERIC PROGRAMMING 9

Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming – Generic classes – generic methods – Bounded Types – Restrictions and Limitations

UNIT - V EVENT DRIVEN PROGRAMMING 9

Graphics programming - Frame - Components - working with 2D shapes - Using color, fonts, and images - Basics of event handling - event handlers - adapter classes - actions - mouse events - AWT event hierarchy - Introduction to Swing - layout management - Swing Components - Text Fields , Text Areas - Buttons Check Boxes - Radio Buttons - Lists- choices- Scrollbars - Windows - Menus - Dialog Boxes.

COURSE OUTCOMES

On completion of the course, students will be able to

CO1	Acquire knowledge in OOPS concepts and develop Java programs using object oriented features.
CO2	Summarize the concept of inheritance, interfaces and implement using Java Programs.
CO3	Design Java applications using Exceptions and I/O streams.
CO4	Analyze and evaluate the concept of threads and generic classes to develop Java applications.
CO5	Create interactive Java programs using Swings.

TEXT BOOKS

- 1. Cay S. Horstmann, Gary cornell, —Core Java Volume –I Fundamentals, 9th Edition, Prentice Hall, 2013.
- 2. Herbert Schildt, —Java The complete reference, 8th Edition, McGraw Hill Education, 2011.

- 1. Paul Deitel, Harvey Deitel, —Java SE 8 for programmers, 3rd Edition, Pearson, 2015.
- 2. Steven Holzner, —Java 2 Black book, Dream tech press, 2011.
- 3. Timothy Budd, —Understanding Object-oriented programming with Java, Updated Edition, Pearson Education, 2000.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	3	-	-	-	-	-	2	2	3	1	2	2
CO2	3	3	2	2	3	-	-	-	-	-	2	2	3	2	2	2
CO3	3	2	2	3	2	-	-	-	-	-	1	2	3	2	2	2
CO4	3	2	3	2	3	-	-	-	-	-	2	1	3	2	2	2
CO5	3	2	2	2	3	-	-	-	-	-	2	2	3	2	2	2

YEAR	II	SEMESTER	III	L	T	P	C
COURSE CODE /	191EE3	321 / NETWORK ANALY	SIS AND	2	2	0	2
COURSE TITLE		SYNTHESIS		2		U	3

- ✓ To understand electrical circuits under transient and steady state conditions.
- ✓ To gain knowledge on two port network representation, High pass and low pass filters and Passive and active circuit Synthesis.
- ✓ To analyze the basic concept of graph theory along the primitive impedance and admittance.

SYLLABUS

UNIT - I NETWORK FUNCTIONS 9

Introduction-continuous signal their classification- Network Functions for one port & two-port networks, poles and zeroes of network functions, Restrictions on poles and zeroes - locations for driving point functions and transfer functions, Time domain behavior of electrical network from the pole-zeroes plot.

UNIT - II TWO PORT NETWORK 9

Relationship of two port variables, Short circuit admittance parameters-open circuit impendence parameters-transmission parameters-hybrid parameters-relationship between parameters sets- interconnections of two port networks.

UNIT - III ELEMENTS OF NETWORKS SYNTHESIS

Reliability of one port network – Hurwitz polynomial and properties – Positive and Real function and properties – synthesis of RL, RC and LC networks.

UNIT - IV NETWORK GRAPH THEORY 9

Network graph - tree and cut sets - tie sets and cut sets schedules - Y shift and I shift - Primitive impedance and admittance matrices, Terminologies used in the graph theory, incidence matrix - cut-set matrix - loop matrix, loop analysis using graph theory - cut set analysis using graph theory.

UNIT - V DESIGN OF FILTERS 9

Derivation of expression for propagation constant - attenuation constant - phase shift constant- cut-off frequency - characteristics impedance, Design of constant K, M - derived and composite filters, qualitative treatment of active filters, Butterworth and Chebyshev filters.

COURSE OUTCOMES

On completion of the course, students will be able to

- CO1 Outline about the network functions with poles and zero concept.
- **CO2** Construct two port networks along with hybrid parameters.
- **CO3** Illustrate the different elements of networks synthesis with positive real functions.
- CO4 Infer the concept of network graph theory with primitive impedance and admittance method.
- **CO5** Acquire knowledge on different types of filters.

TEXT BOOKS

- 1. Desoer, Ernest S Kuh: Basic circuit theory, McGraw Hill third edition 2011.
- 2. D Roy Choudhary: Network and systems, New Age International fifth edition 2009.
- 3. F.F.Kuh: Network Analysis and Synthesis, John Wiley & Second edition 2007.

- 1. Sudhakar, A. Shyammohan, "Circuits and Network", Fourth Edition, 2011, Tata McGraw Hill.
- 2. "Introduction to Network Synthesis", Valkenburg, PHI Publication third edition 2008
- 3. Kelkar, Pandit, "Linear Network Theory", Pratibha Publication fifth edition 2006
- 4. "Network Analysis And Synthesis", Wadhwa, New Age Publication first edition 2004

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	3	-	3	3	3	3	1	1
CO2	3	2	1	1	-	-	-	-	3	-	3	3	3	2	1	1
CO3	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1
CO4	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1
CO5	3	3	2	2	-	-	1	-	3	-	3	3	3	3	2	1

YEAR	II	SEMESTER	III	L	T	P	C
COURSE CODE / COURSE TITLE	191EE3	322 / INTEGRATED ELECT	TRONICS	3	2	0	4

- ✓ To reduce Boolean expressions
- ✓ To understand Combinational and Sequential Circuits
- ✓ To learn about Applications of Op-amp
- ✓ To gain knowledge about Special IC's

SYLLABUS

UNIT - I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

9

Boolean Algebra and laws - Realization using logic gates-Representation of logic functions – SOP and POS forms, Simplification of Boolean expressions - Logic Minimization using K-map- Implementation of 2 input NOR, NAND gates using TTL & CMOS Logic - open collector output - open drain output - Error detection and correction codes (Parity and Hamming code)

UNIT - II COMBINATIONAL LOGIC CIRCUITS

9

Half adder and Full adder, Subtractor, Multipliers – Multiplexers & De-multiplexers, Encoders, Priority encoder, Decoders, Code converters

UNIT - III

SEQUENTIAL LOGIC CIRCUITS

9

Latches and Flip –Flops (SR, JK, T, D), State Diagrams – Timing Diagrams and state Tables, Sequential Circuit Design, Shift Registers, Synchronous counters (up, down, up-down, mod-N, Ring) - Digital clock.

UNIT - IV OPERATIONAL AMPLIFIER AND ITS APPLICATIONS

9

Introduction – Classification – IC chip size and circuit complexity, Ideal OP-AMP characteristics – DC characteristics – AC characteristics, differential amplifier, Basic op-amp applications - Inverting and Non inverting amplifiers – summer and Subtractor – Differentiator – Integrator, V/I and I/V converter, Instrumentation amplifier, Precision rectifier, Schmitt Trigger, Multi-vibrators

UNIT - V SPECIAL IC'S

Phase locked loop and its application for frequency multiplication/division and frequency translation, 555 timers IC – Monostable and Astable operation- Application of 555 for pulse width modulation and FSK generator - LM317, IC723 regulator.

COURSE OUTCOMES

On completion of the course, students will be able to

011 001111	station of the course, statement will be used to
CO1	Outline about Boolean functions and TTL logic
CO2	Design Combinational circuits
CO3	Solve Sequential circuits
CO4	Analyze the characteristics of op-amp and to function on applications of op-amp
CO5	Make use of Special IC's

TEXT BOOKS

- 1. M.Morris Mano, Digital Design, Pearson Publication. Fourth edition 2014.
- 2. David A. Bell, 'Op-amp & Linear ICs', Oxford, 2013.
- 3. D. Roy Choudhary, Sheil B. Jani, 'Linear Integrated Circuits', II edition, New Age, 2003.
- 3. Ramakant A.Gayakward, 'Op-amps and Linear Integrated Circuits', IV edition, Pearson Education, 2003 / PHI. 2000.

- 1. Floyd, Buchla,"Fundamentals of Analog Circuits, Pearson, 2013.
- 2. Fiore,"Opamps& Linear Integrated Circuits Concepts & applications", Cengage, 2010.
- 3. Analog Electronics, L.K.Maheshwari, Laxmi Publications third 2 nd edition 2009.
- 4. Basic Electronics, B.L. Thareja, S.Chand Publishing fourth edition 2007.
- 5. Modern Digital Electronics, R.P. Jain, TMH 2nd edition 2007.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	-	-	-	3	3	3	1	1
CO2	3	2	1	1	1	-	-	-	-	-	3	3	3	3	1	1
СО3	3	2	1	1	-	-	-	-	-	-	-	3	3	3	1	1
CO4	3	3	2	2	1	-	-	-	-	-	3	3	3	3	2	1
CO5	3	2	1	1	-	-	-	-	-	-	-	3	3	3	1	1

YEAR	II	SEMESTER	III	L	T	P	C
COURSE CODE / COURSE TITLE	191EE323 /	DC MACHINES AND TRA	NSFORMERS	3	2	0	3

- To understand the concepts of electro mechanical energy conversion.
- To learn about the performance of transformers.
- To gain about the various losses of DC machines and transformers.
- To gain knowledge about the construction and working of transformers.
- ✓ To enumerate the different types of testing in DC machines and transformers.

SYLLABUS

UNIT - I BASIC CONCEPTS OF ROTATING MACHINES

Electrical machine types - Introduction to magnetic circuits-Magnetically induced EMF-AC operation of magnetic circuits - Iron losses - Energy in magnetic systems - Single and Multiple excited systems - MMF of distributed windings - Magnetic fields in rotating machines.

DC GENERATORS **UNIT-II** 9

Constructional features of DC machine - Principle of operation - EMF equation - Methods of excitation - Types - Characteristics - Armature reaction - Methods of compensation - Commutation - Parallel operation.

UNIT - III DC MOTORS

Principle of operation – Back EMF – Torque equation – Types – Speed-Torque characteristics – Starters – Speed control of DC series, shunt and compound motors - Losses and efficiency - Permanent Magnet DC motors.

UNIT - IV 9 **TRANSFORMERS**

Principle of operation - Constructional features of single phase and three phase transformers - EMF equation - Phasor diagram -Equivalent circuit - Regulation -Three phase transformer connections - Parallel operation of single phase and three phase transformer - Auto transformers.

UNIT - V TESTING OF DC MACHINES AND TRANSFORMERS 9

Testing of DC machines - Brake test, Swinburne's test, Retardation test, Hopkinson's test - Testing of transformer - polarity test, load test, open circuit and short circuit test, Sumpner's test - All day efficiency - Losses and efficiency - Condition for maximum efficiency

COURSE OUTCOMES

On completion of the course, students will be able to

- Relate the concepts of Electromechanical Energy Conversion. **CO1**
- CO₂ Demonstrate the working principles of DC machines and their applications.
- CO₃ Illustrate about speed control techniques.
- CO₄ Analyze about the constructional details and working principles of Transformers.
- **CO5** Evaluate the various losses occurring in DC machines and transformers.

TEXT BOOKS

- 1. Fitzgerald. A.E., Charles kingselyJr and Stephen D. Umans, "Electric Machinery", Tata McGraw Hill Private Limited, 2013
- 2. Nagrath. I.J and Kothari. D.P., "Electric Machines", Tata McGraw Hill Private Limited, 2012.
- 3. Bimbhra. P.S., "Electrical Machinery", Khanna Publishes, 7th Edition, 2011.
- 4. Theraja. B.L. and Theraja. A.K., "A text book on Electrical Technology", Volume–II, S.Chand and Company Limited, 2009.
- 5. V.K.Mehta and RohitMehta ., "Principles of Electrical Machines" S.Chand publications.

- 1. Sen. P.C., "Principles of Electrical Machines and Power Electronics", John Wiley and Sons, 2014.
- 2. Murugesh Kumar. K, "Electric Machines", Vikas Publishing House Private Limited, 2010.
- Irving L. Kosow, "Electric Machinery and Transformers", 2nd Edition, Reprint, Prentice Hall Private Limited, 2007.
 Stephen J. Chapman, "Electric Machinery Fundamentals", 4th Edition, Tata McGrawHill Private Limited, 2005.
- 5. Vincent Del Toro, "Electrical Engineering Fundamentals", Prentice Hall Private Limited, 2003.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	-	-	-	-	3	3	1	1
CO2	3	3	2	2	-	-	-	-	-	-	-	-	3	3	2	1
СОЗ	3	3	2	2	-	-	-	-	-	-	-	-	3	3	2	1
CO4	3	3	2	2	-	-	-	-	-	-	-	-	3	3	2	1
CO5	3	3	2	2	-	ı	-	-	-	-	-	-	3	3	2	1

	YEAR	I	SEMESTER		I	L	T	P	C
	SE CODE /	191CS31B		ENTED PROGRA	AMMING	0	0	2	1
COURS	SE TITLE			E OBJECTIVES				_	_
✓ ✓ ✓	To understand an	nd apply the con-	ills using java prog cepts of classes, pa neric programming	gramming for real wackages, interfaces, ag and event handling.	rray list, exce		andling a	and file	processing.
	Davidas a Java			EXPERIMENTS		. 11		C	
1	consumer name, commercial). Confit the type of the First 100 units - Results - Solution - Solution - Solution - Results - Resu	previous monompute the bill at EB connection Rs. 1 per unit Rs. 2.50 per unit Fs. 4 per unit 6 per unit EB connection Rs. 2 per unit Rs. 4.50 per unit Rs. 4.50 per unit	th reading, curre mount using the fo is domestic, calcul	y bill. Create a class nt month reading, sillowing tariff. ate the amount to be culate the amount to	and type of paid as follow	EB co	•		
	201 -500 units - l	Rs. 6 per unit							
	> 501 units - Rs.	7 per unit							
2		er (meter to KN	•	converter (Dollar to and vice versa), time					
3	Inherit the classe Pay (BP) as the	es, Programmer, member of all t	Assistant Professor	with Emp_name, Emp or, Associate Professor es with 97% of BP a for the employees wi	or and Profess as DA, 10 %	of BP a	employ	ee class	. Add Basic
4		terface for ADT		this interface using a				ption ha	ndling in
5	Write a program Append - add at of Insert – add at pa Search List all string star	end articular index		ArrayList. Write fun	nctions for the	e followi	ng		
6	Write a Java Programming Coeach one of the coprints the area of	gram to create and ovide three class MENTS CO1 Disponcepts CO3 Carlasses extends the given shape	n abstract class nates named Course (scuss on Object Ortegorize Advanced ne class Shape. Eact.	med Shape that contained Shape that contained Shape the criented concepts CO. Programming Concepts one of the classes	completion of 2 Develop app epts Rectangle	the councilonal the councilon the council the	rse, Stud s using gle and	lents wi Object (Circle si	Il be able to Oriented uch that
7		-	ent user defined ex						
8		-		ne user, displays info the length of the file		t whethe	er the fil	e exists,	, whether

	Write a java program that implements a multi-threaded application that has three threads. First thread generates a
9	random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If
	the value is odd, the third thread will print the value of cube of the number.
10	Write a java program to find the maximum value from the given type of elements using a generic function.
	Design a calculator using event-driven programming paradigm of Java with the following options.
11	Decimal manipulations
	Scientific manipulations
12	Develop a mini project for any application using Java concepts
	COURSE OUTCOMES
On comp	pletion of the course, students will be able to
CO1	Discuss on Object Oriented concepts.
CO2	Develop applications using Object Oriented Programming Concepts.
CO3	Categorize Advanced Programming Concepts.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	3	-	-	-	1		2	2	3	2	2	2
CO2	3	2	2	2	3	-	ı	-	1	-	2	2	3	2	2	2
СОЗ	3	2	2	2	3	ı	ı	-	1	-	2	2	3	2	2	2

YEAR		II	SEMESTER	III	L	T	P	C
	SE CODE /	191EE32A /	DC MACHINES AND TRA	NSFORMERS	0	0	2	1
COURS	SE TITLE		LABORATORY		U	U	4	
			COURSE OBJECTIV	/ES				
			enerators and Motors					
			ues in DC shunt motor.					
√	To gain knowledge	e about transforr	mers under OC and SC condition	•				
			LIST OF EXPERIME	NTS				
1	Study of DC star	ters						
2			tics of self – excited DC shunt ge					
3			tics of separately-excited DC sh	unt generators				
4	Load characterist							
5			and compound motor					
6	Load characterist							
7			ol of DC shunt motor					
8	Hopkinson's test							
9	Load test on sing							
10			s on single phase transformer					
11	Sumpner's test of							
12			ngle phase transformer					
13	Study of Parallel	operation of sin	gle-phase transformer					
	1 .: 0.1	. 1	COURSE OUTCOM	ES				
	letion of the cours							
CO1	_		C generators and Motors.					
CO2	Apply the speed	•						
CO3	Examine about re	egulation of tran	sformers.					

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	-	-	-	1	-	2	2	3	2	2	2
CO2	3	3	2	2	-	-	-	-	1	-	2	2	3	2	2	2
СОЗ	3	3	2	2	-		-	-	1	-	2	2	3	2	2	2

YEAR		II	SEMESTER		III	L	T	P	C					
COURS	SE CODE /	19	1EE32B / INTEG	RATED CIR	CUITS	0	0	2	1					
COURS	SE TITLE		LABOR			U	U	2	1					
				OBJECTIV	ES									
	To design and veri	•	•											
	To verify the appli		-amp											
✓	To work with Tim	er and PLL												
	1 = -			EXPERIMEN										
1	•		nctions, Adder and S											
2			CD and Binary to G	ray code conve	rter and vice-versa	Į.								
3	Encoders and De													
4	Parity generator a													
5	Counters: Design and implementation of 3-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.													
3		Asynchronous types using FF IC's and specific counter IC. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitability												
6		Design and in	plementation of 4-bi	t shift registers	s in SISO, SIPO, F	PISO, PI	PO mod	des usin	g suitability					
	IC's													
7	Study of multiple		ıltiplexer											
	Application of O													
	a. Inverting and r													
8	b. Adder and Dif		ifier											
	c. Integrator and													
	d. Comparator an													
9	* * *	<u>.</u>	NE/SE 555 timer in	<u>.</u>	nostability operation	on								
10	Voltage to freque	ncy character	istics of NE/SE 566											
				E OUTCOME	ES									
_	oletion of the cours													
CO1			al setup circuits of co				_							
CO2			Inverting amplifier, a											
CO3	Examine the char regulator using L		voltage controlled os	cillator using N	NE/SE 566 IC and	Design	the varia	ability v	oltage					

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2	-	-	-	-	2	-	2	2	3	2	3	2
CO2	3	3	3	2	-	-	-	-	2	-	2	2	3	1	3	2
СОЗ	3	3	3	2	-	-	-	-	2	-	3	2	3	3	3	2

		SEMESTER – IV												
YEAR	II	SEMESTER	IV	L	T	P	C							
COURSE CODE / COURSE TITLE	191MA404	/ FOURIER SERIES AND T	RANSFORMS	2	2	0	3							
		COURSE OBJECTIV												
boundary valu ✓ To acquaint the	ne problems ne student with Fouri	sis which is central to many app ier transform techniques used in w s for discrete time Systems		0 1	oart fron	n its use	in solving							
SYLLABUS HOUSE GEORGE														
UNIT - I FOURIER SERIES														
Dirichlet's conditions – General Fourier series – Change of Interval - Odd and even functions.														
UNIT - II														
Half range sine series -Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analy														
UNIT - III FOURIER TRANSFORMS														
Statement of Fourier integral theorem – Fourier transforms pair – Fourier sine and cosine transforms – Properties – Trans														
simple functions.														
UNIT - IV		RSEVAL'S IDENTITY FOR					9							
		Parseval's Identity for F- Transform			e functi	ons								
UNIT - V		RANSFORMS AND DIFFER					9							
		Inverse Z - transform (using pa		residues) – Cor	ivolution	ı theorem -							
Formation of difference	e equations – Solutio	on of difference equations using Z												
On completion of the c	ourse students will	COURSE OUTCOMI	ES											
-		rent periodic functions and to eva	luate infinite series	<u> </u>										
		or the given periodic function.	idate militie series	·•										
		d inverse transform and understan	d the fundamental	nronerti	es									
		nd the product of Fourier transform		propert										
11 7	discrete signals using	*												
2 Se Tamay 20 tilo	and a second second second	TEXT BOOKS												
1. Grewal. B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2017														
		REFERENCES												

- 1. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc Graw Hill Publishing Company Limited, NewDelhi, 2008.
- Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
 Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd, 2007.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	-	-	-	-	-	-	2	2	2	2	1	1
CO2	3	3	3	3	-	-	-	-	-	-	2	2	2	2	1	1
CO3	3	3	3	3	-	-	-	-	-	-	2	2	2	2	1	1
CO4	3	3	3	3	-	-	-	-	-	-	2	2	2	2	1	1
CO5	3	3	3	3	-	-	-	-	-	_	2	2	2	2	1	1

YEAR	II	SEMESTER	IV	L	T	P	C
COURSE CODE / COURSE TITLE	191EE42	21 / ELECTROMAGNETIC	THEORY	3	0	0	3

- ✓ To analyze the basic mathematical concepts related to electromagnetic waves and vector fields
- ✓ To impart knowledge on the concepts of electrostatics, electrical potential, energy density and their applications.
- ✓ To understand the concepts of magneto-statics, magnetic flux density, scalar and vector potential.
- To impart knowledge on the concepts of Faraday's law, induced EMF and Maxwell's equation.

SYLLABUS

UNIT - I VECTOR ANALYSIS 9

Scalar – vector - vector addition - subtraction and multiplication, Coordinate Systems - Gradient – Divergence - differential elements – Curl, divergence and stokes theorem, Electric field intensity - electric flux density - Coulomb's Law – Gauss's law.

UNIT - II ELECTROSTATICS 9

Electric potential – Electric field and electric potential - Uniform and Non - Uniform field, Electric field in free space - conductors - multiple dielectrics and field behavior at the interfaces - Dielectric strength - Electric field in multiple dielectrics – Boundary conditions, Poisson's and Laplace's equations, Capacitance, Energy density.

UNIT - III MAGNETOSTATICS 9

Magnetic field intensity—Biot—Savart's Law - Ampere's Circuit Law - H due to straight conductors, circular loop - infinite sheet of current, Magnetic flux density (B) - B in free space potential - conductor - magnetic materials - Magnetization - Magnetic field in multiple media - scalar and vector Poisson's Equation, Energy density.

UNIT - IV ELECTRODYNAMIC FIELDS 9

Magnetic Circuits - Faraday's law - Transformer and motional EMF - Displacement current - Maxwell's equations (differential and integral form) - Relation between field theory and circuit theory - Applications.

UNIT - V ELECTROMAGNETIC WAVES 9

Electromagnetic wave generation and equations – Wave parameters – velocity – Waves in free space - lossy and lossless dielectrics - conductors- skin depth - Poynting vector – Plane wave reflection and refraction – Standing Wave.

COURSE OUTCOMES

On completion of the course, students will be able to

- **CO1** Demonstrate the basic mathematical concepts related to electromagnetic waves and vector fields.
- **CO2** Apply the knowledge on the concepts of electrostatics, electrical potential, energy density and their applications.
- CO3 Infer the different concepts of magneto-statics and summarize the magnetic flux density with scalar and vector potential.
- **CO4** Illustrate Maxwell's equations in differential and integral forms.
- **CO5** Enumerate the electromagnetic wave equations for the problems relating to uniform plane.

TEXT BOOKS

- 1. Mathew N. O. Sadiku, 'Principles of Electromagnetics', 4 th Edition Oxford University Press Inc. First India edition, 2016.
- 2. Ashutosh Pramanik, 'Electromagnetism Theory and Applications', PHI Learning Private Limited, New Delhi, Second Edition-2009.
- 3. K.A. Gangadhar, P.M. Ramanthan' Electromagnetic Field Theory (including Antennas and wave propagation', 16th Edition, Khanna Publications, 2007.

- 1. William H. Hayt and John A. Buck, 'Engineering Electromagnetics', Tata McGraw Hill 8th Revised edition, 2011.
- 2. Joseph. A. Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's Outline Series), Tata McGraw Hill, 2010
- 3. Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 2010.
- 4. Bhag Singh Guru and Hüseyin R. Hiziroglu "Electromagnetic field theory Fundamentals", Cambridge University Press; Second Revised Edition, 2009.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	-	-	-	3	3	3	2	1
CO2	3	2	1	1	-	-	-	-	-	-	-	3	3	3	2	1
CO3	3	3	2	2	-	ı	1	-	ı	-	-	3	3	3	2	1
CO4	3	3	2	2	-	1	1	-	ı	-	-	3	3	3	2	1
CO5	3	3	2	2	-	-	-	-	-	-	-	3	3	3	2	1

YEAR	II	SEMESTER	IV	L	T	P	C
COURSE CODE / COURSE TITLE	19	1EE422 / CONTROL SYST	EMS	2	2	0	3

- ✓ To introduce the components and their representation of control systems
- ✓ To learn various methods for analyzing the time response, the frequency response and stability of the systems
- ✓ To learn the various approach for the state variable analysis

SYLLABUS

UNIT - I SYSTEMS COMPONENTS AND THEIR REPRESENTATION 9

Introduction to the control system – Terminology and Basic Structure – Feed forward and Feedback control theory – Electrical and Mechanical system Transfer Function Models, Block diagram Models, Signal flow graphs models, DC and AC servo Systems – Synchros

UNIT - II TIME DOMAIN ANALYSIS 9

Introduction – Performance specification – Transient Response Specification in terms of Pole Location – Steady state error constants and system – Type number - Introduction to Design and Compensation – Characteristics of Proportional mode of control – Characteristics of Integral mode of control – Characteristics of Derivative mode of control – PID Controllers, Time response analysis using MATLAB

UNIT - III FREQUENCY DOMAIN ANALYSIS AND COMPENSATOR DESIGN

Closed loop frequency response – Performance specification in frequency domain – Frequency response of standard second order system – Bode Plots – Polar Plot – Cascade lead compensation – Cascade lag compensation – Cascade lag-lead compensation – Design using bode plots, Frequency response analysis using MATLAB

9

UNIT - IV S DOMAIN ANALYSIS AND SYSTEM STABILITY 9

Concept of stability – Bounded Input Bounded Output stability – Routh stability criterion – Relative stability – Root locus concept – Guidelines for sketching root locus – Nyquist stability criterion, Nyquist and Root locus using MATLAB.

UNIT - V STATE VARIABLE APPROACH 9

State variable representation – Conversion of state variable models to transfer functions – Conversion of transfer functions to state variable models – Solution of state equations – Concepts of Controllability and Observability – Stability of linear systems – Equivalence between transfer function and state variable representations – State space analysis using MATLAB.

COURSE OUTCOMES

On completion of the course, students will be able to

On comp	betton of the course, students will be able to
CO1	Discuss about Systems.
CO2	Examine time response analysis of LTI systems.
CO3	Solve frequency domain analysis of control systems.
CO4	Analyze the stability of the system in s-domain.
CO5	Develop various approaches with state space representation and to solve transfer function model.
	THE TO CALC

TEXT BOOKS

- 1. Nagrath I.J and Gopal M., "Control Systems Engineering", New Age International Publishers, 5thEdition (Reprint), 2016.
- 2. M.Gopal, "Control System Principles and Design", Tata McGraw Hill, 4th Edition, 2013.
- 3. S.K.Bhattacharya, "Control System Engineering", 3rd Edition, Pearson, 2013
- 4. M.Gopal, "Control System Principles and Design", Tata McGraw Hill, 4th Edition, 2012.

- 1. Salaivahanan. S, Rengaraj. R, Venkata krishnan. G. R., "Control Systems Engineering", Pearson India Education Services Pvt. Ltd., 2015.
- 2. K. Ogata, 'Modern Control Engineering', 5th edition, PHI, 2012.
- 3. Richard.C. Dorf and Robert H. Bishop, "Modern Control Systems", Addidon Wesley, 2011.
- 4. Benjamin C. Kuo, "Automatic Control systems", Pearson Education, New Delhi, 2009.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	1	-	-	3	-	3	3	3	3	2	1
CO2	3	2	1	1	1	-	-	-	3	-	3	3	3	3	1	1
CO3	3	2	1	1	1	ı	1	-	3	1	3	3	3	3	1	1
CO4	3	2	1	1	1	ı	ı	-	3	ı	3	3	3	3	2	1
CO5	3	2	1	1	1	-	-	-	3	-	3	3	3	3	1	1

YEAR		II	SEMESTER	IV	L	Т	P	С						
COURSE COURSE		191E	EE423 / AC ROTATING MA	ACHINES	3	0	0	3						
			COURSE OBJECT		•									
			amentals of AC rotating machin		al details.									
			e of operation of 1 phase induction	on motor.										
✓ To	analyze and sel	lect machine fo	r specific application.	_										
SYLLABUS LINIT - I ASYNCHRONOLIS MACHINES														
UNIT - I ASYNCHRONOUS MACHINES Three Phase Industrian Motor, Types Construction, Working Deinsinks, Torque Slin Characteristics, Equivalent														
Three Phase Induction Motor – Types – Construction – Working Principle – Torque-Slip Characteristics – Equivalent C														
Circle Diagram – Applications, Single Phase Induction Motor – Types – Construction – Working principle – Equivalent Ci														
Applications. UNIT - II SYNCHRONOUS GENERATORS														
Alternator – Types – Construction – working principle – Characteristics – emf equation – Testing–Parallel operation – A														
						anci o _l	Ciation -	- Armature						
Reaction – Voltage Regulation – EMF, MMF and ZPF methods – Two Reaction Theory–Applications. UNIT - III SYNCHRONOUS MOTOR														
- '		ng Principle –	V and inverted V-Curves – Pov		vnchronoi	is moto	r – Char	9 acteristics						
			ng – Synchronous Condenser.	, , _F	,									
UNIT - IV			ARTERS AND SPEED CO	NTROL METH	ODS			9						
Types of S	tarters – DOL		stance starters – Autotransform			- Signif	icance of	of starters—						
Comparison	, Speed Contro	ol – Voltage co	ontrol – frequency control – pol	e changing method	l – Casca	ded Cor	nnection,	Braking -						
	Dynamic brakin	ng – Regenerati												
UNIT - V			SPECIAL MAC	HINES				9						
Linear Indu	ction Motor, Hy	ysteresis Motor,	, Eddy Current Motor, Brushless	DC motor, Inducti	on Genera	ator, AC	Series N	√lotor.						
			COURSE OUTCOM	MES										
On complet	ion of the cours	e, students will	be able to											
CO1 E	xplain about the	e fundamentals	of AC rotating machines.											
CO ₂ D	Demonstrate about the operating principle of Induction Motor.													
CO ₃ E	xamine the perf	formance of Syr	nchronous Machines.											
	-													

1. Bimbhra. P.S., "Electrical Machinery", Khanna Publishes, 7th Edition, 2011.

Classify the different Starting and speed control techniques.

Analyze and select machines for specific application.

CO₄

CO₅

- 2. Nagrath. I.J and Kothari. D.P., "Electric Machines", Tata McGraw Hill Private Limited, 2010.
- 3. Theraja. B.L. and Theraja. A.K., "A text book on Electrical Technology", Volume– II, S.Chand and Company Limited, 2009

- 1. Electrical Machines II, GC Garg, (ISBN: 978-93-86173-60-7), Khanna Book Publishing, Delhi, 2018.
- 2. M.N.Bandopathy, Electrical Machines, Theory and Practices, PHI Learning PVT Ltd., New Delhi, 2009.
- 3. The Performance & Design of Alternating Current Machines, Say, CBS Publishers 2002.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	-		3	3	3	3	1	1
CO2	3	2	1	1	-	-	-	-	-		3	3	3	3	1	1
СОЗ	3	2	1	1	-	-	-	-	-		3	3	3	3	1	1
CO4	3	3	2	2	-	-	-	-	-		3	3	2	3	2	1
CO5	3	3	2	2	-	-	-	-	-		3	3	3	3	2	1

YEAR		II	SEMESTER		IV	L	Т	P	С				
COURSE COI	DE./		E424 / MICROPRO	CESSO									
COURSE TIT		1712	MICROCONTRO			3	0	0	3				
000102 111			COURSE OB										
✓ To impa	rt knowled	lge on Architec	cture of 8051 & PIC Micr										
			lopment with programmi			ollers.							
			sing modes, instruction so										
			SYLL	ABUS									
UNIT - I			INTRO	DUCTIO	N				9				
			ocontroller – Evolution,										
architecture – CISC and RISC, Overview of 16/32/64-bit Microprocessors and Microcontrollers – Applica													
Microprocessors and Microcontrollers													
UNIT - II 8051 MICROCONTROLLER 8051 Architecture – Pin details, Timing Diagram, Memory organization, Parallel Ports, Counters/Timers – Interrupts - Sec													
	es-Instructi		-Basic Assembly languag										
UNIT - III		8051 INTERI	FACING WITH PER	IPHERA	LS USING EM	1BEDD	ED 'C'	ı	9				
Introduction to I	DE, Embe	edded C Data	Types-Programming stru	cture, Ma	trix Keyboard-L	CD-DAC	-ADC	- 7-seg	gment LEI				
Display.													
UNIT - IV			SERIAL COMN	MUNICA	TION				9				
	, Inter-inte		(I2C), Universal Serial Bu										
UNIT - V			ODUCTION TO PIC						9				
PIC 16F877 mici	ocontrolle	r – Architectur	e On chip, ADC-Capture			I 2C – SI	PI – Wat	ch dog t	imer				
			COURSE OU	TCOME	ES								
On completion or		•											
			dge of Microprocessor ar		•		ıs tasks.						
Make use of techniques, skills and ability to interface microprocessor with various devices.													
CO3 Analyze linear and digital electronic circuits.													
CO4 Identif	y and form	nulate the ways	to effectively utilize mic	rocontrolle	er peripherals.								

1. Muhammed Ali Mazidi, Janice GillispieMazidi, Rolin D Mckinlay "The 8051 Microcontroller and Embedded Systems", Pearson Education India, New Delhi, 2011.

Develop the Application systems with Microprocessor and Microcontroller concepts.

- 2. Ramesh S Gaonkar, —"Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, Prentice Hall of India, New Delhi, 2011.
- 3. J John B.Peatman, "Design with PIC Microcontrollers", Pearson Education, 2002.

CO5

- 1. P.S.Manoharan, P.S.Kannan, "Microcontroller based system design", Scitech Publications Pvt. Ltd., Chennai, 2007.
- 2. K Kenneth.J. Ayala, "The 8051 Microcontroller, Architecture, Programming & Applications (third edition)", Penram International, India (2004).
- 3. A.K Ray,K M Bhurchandi,"Advanced Microprocessors and Peripherals", Tata Mcgraw Hill Education,2nd Edition 2006. 4.https://www.nxp.com/docs/en/data-sheet/LPC2141_42_44_46_48.pdf

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	1	-	-	-	3	2	3	3	3	3	1	1
CO2	3	3	2	2	1	-	-	-	3	3	3	3	3	3	2	1
СОЗ	3	3	2	2	1	-	-	-	3	3	3	3	3	3	2	1
CO4	3	2	1	1	1	-	-	-	3	2	3	3	3	3	1	1
CO5	3	3	2	2	1	-	-	-	3	3	3	3	3	3	2	1

YEAR	II	SEMESTER	IV	L	T	P	C
COURSE CODE /	1:	91EE425 / MEASUREMENT	AND	2	0	0	2
COURSE TITLE		INSTRUMENTATION		3	U	U	3

- ✓ To gain knowledge about Errors in Measurements
- ✓ To understand the working of Analog and Digital Meters
- ✓ To learn comparison methods of Measurements

SYLLABUS

UNIT - I INTRODUCTION 9

Role and needs of instrumentation – Classification - Selection of instruments – Functional elements of an instrument, Static and dynamic characteristics, Errors in measurement – Statistical evaluation of measurement data, Standards and calibration.

UNIT - II ANALOG CURRENT AND VOLTAGE MEASUREMENT

10

D'Arsonval Galvanometer, Moving iron – attraction and repulsion type instruments, Moving coil instruments – Permanent magnet moving coil instruments - Dynamometer type moving coil Instruments, Torque equations and errors, Extension of ranges – use of shunts, Instrument Transformers.

UNIT - III MEASUREMENT OF POWER AND ENERGY

9

Dynamometer type wattmeter – Torque expression – Errors, Energy meters – Calibration of energy meters, Measurement of power, Instrument Transformers, Maximum demand indicator, Power factor meter, Synchroscope.

UNIT - IV MEASUREMENT OF R-L-C

8

Resistance measurement – Kelvin double bridge – Wheatstone bridge – substitution method - Loss of charge method - Guard Wire method, Measurement of inductance and capacitance – Maxwell – Anderson – Schering Bridge. Measurement of Earth resistance – Megger, Electrostatic and Electromagnetic Interference – Grounding Techniques.

UNIT - V DIGITAL MEASURING DEVICES AND DISPLAY DEVICES

9

Electronic voltmeter – Digital voltmeter of ramp and integrating types, Digital Multimeter, Digital three phase Real power and Energy measurement- Harmonic Distortion Analyzer, Function Generator, Dual channel Oscilloscope, Digital storage Oscilloscope, A/D – D/A Converters, Display Devices – Printers - LED – LCD, Introduction to recent developments in sensors – SMART sensors – Nano sensors

COURSE OUTCOMES

On completion of the course, students will be able to

- **CO1** Summarize the basic blocks of Instrumentation.
- **CO2** Examine the operation of Voltage and current Measuring Instruments.
- **CO3** Infer the operation of meters to measure Power and Energy.
- **CO4** Select suitable bridges to measure passive elements.
- **CO5** Perceive digital measuring systems.

TEXT BOOKS

- 1. J. B. Gupta, "A Course in Electronic and Electrical Measurements", S. K. Kataria& Sons, Delhi, 2013.
- 2. Sawhney A K, —"A Course in Electrical and Electronic Measurement and Instrumentation", Dhanpat Rai & Sons, New Delhi, 2011.
- 3. H.S. Kalsi, "Electronic Instrumentation", McGraw Hill, III Edition 2010.

- 1. David A. Bell, —"Electronic Instrumentation and Measurements", Oxford University Press, New Delhi, 2012.
- 2. Doeblin E O and Dhanesh N Manik, —"Measurement Systems", McGraw-Hill, New Delhi, 2012.
- 3. Rangan C S, Sharma G R, Mani V S, "Instrumentation Devices and Systems', Tata McGraw-Hill, New Delhi, 2004

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	3	-	-	-	3	3	3	3	1	1
CO2	3	2	1	1	-	-	3	-	-	-	3	3	3	3	1	1
CO3	3	3	2	2	-	-	3	-	-	-	3	3	3	3	2	1
CO4	3	3	2	2	-	-	3	-	-	-	3	3	3	3	2	1
CO5	3	2	1	1	-	-	3	-	-	-	3	3	3	3	1	1

YEAR		II	SEMESTER	IV	L	T	P	C					
	SE CODE /	191El	E42A / AC ROTATING MA	CHINES	0	0	2	1					
COURS	SE TITLE		LABORATORY		U	U		1					
			COURSE OBJECTIV	ES									
			tors by various methods										
	To predetermine th												
✓	To gain knowledge	e from Equivale											
			LIST OF EXPERIME	NTS									
1	Study of AC Mot												
2	Regulation of Three Phase Alternator by EMF and MMFmethods Regulation of Three Phase Alternator by ZPF and ASA methods												
3													
4			t Pole Alternator by Slip test										
5			Phase Synchronous Motor										
6	Load test on Thre												
7			characteristics of three phase ind	luction motor by ci	rcle diag	gram and	d equiva	lent circuit.					
8			Three Phase Induction Motor										
9	Load test on Sing												
10	•		se Induction Motor										
11	Study of Parallel	operation of two											
			COURSE OUTCOM	ES									
	oletion of the cours												
CO1			and Three phase Induction motor	rs, Synchronous ar	nd Altern	nators							
CO2	Determine the lo	sses of the mach	ines										
CO3	Select Starters for	or particular mac	hines										

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	-	-	-	-	-	-	-	1	3	2	1	2
CO2	3	2	2	2	1	-	-	-	-	-	-	1	3	2	1	2
CO3	3	2	2	2	-	-	-	-	-	-	-	2	3	2	1	2

YEAR		II	SEMESTER	IV	L	T	P	C						
COURS	SE CODE /	191I	E424B / MICROPROC	CESSORS AND	0	0	2	1						
COURS	SE TITLE	MIC	ROCONTROLLERS L	ABORATORY	U	U	2	1						
			COURSE OBJE	ECTIVES										
	To execute embed													
	To implement mic													
✓	To provide in dept	th knowledge o	f 8051 and MSP 430 assem		g									
			LIST OF EXPE											
1			ddition / subtraction / multip	plication / division.										
	Programming wi			C 1										
2			er, Maximum / Minimum of	f numbers.										
	(ii) Programs using (iii) Hex / ASCII													
	()													
3	Interface Experir		55											
3	(i) A/D Interfacing. (ii) D/A Interfacing													
4			ort / Serial communication											
5	Read a key, inter		or benu communication											
			ions with 8051 Micro contro	oller execution, including										
6			alling subroutines.	~ ·										
7			r of 8051 study on interface	with A/D & D/A										
7	Study on interfac													
8			s/ Interrupts/ Serial port pro											
9			M Generation/ Motor Contr	ol/ADC/DAC / LCD/ RT0	C Interfa	cing/ Se	ensor Int	erfacing						
10	Interfacing 8051	with stepper n												
	COURSE OUTCOMES													
	letion of the cours	•												
CO1	Develop progran													
CO2	Interface Process	sors with real t	me systems.											
CO3	Apply concepts f	for Serial Com	munication.											

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	2	-	-	-	-	-	2	2	3	2	2	2
CO2	3	2	2	2	2	-	-	-	-	-	2	2	2	2	2	2
CO3	3	2	2	2	2	-	-	-	-	I	2	2	3	2	2	2

YEAR	II	SEMESTER	IV	L	T	P	C
COURSE CODE / COURSE TITLE		191MC46A / INTERNSHIP	1	0	0	0	0

- ✓ To develop the skills in cutting edge technologies in the industry
- ✓ To acquire knowledge to work smooth in industry environment
- ✓ To get through the placement interviews

DEMONSTRATION

The students may undergo Internship at Research organization / University (after due approval from the Department Consultative Committee) for the period prescribed in the curriculum during summer / winter vacation, in lieu of Industrial training.

The Internship is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. An Internship report is required at the end of the semester. The Internship training is evaluated based on oral presentation and the Internship report jointly by external and internal examiners constituted by the Head of the Department.

COURSE OUTCOMES On completion of the course, students will be able to CO1 Acquire knowledge about the Industry environment. CO2 Apply the skills to the carriers. CO3 Develop skills in teamwork.

SEMESTER - V

YEAR	III	SEMESTER	V	L	T	P	C
COURSE CODE / COURSE TITLE	191	IEE511 / EMBEDDED SYS	STEM	3	0	0	3

COURSE OBJECTIVES

- ✓ To introduce the Building Blocks of Embedded System
- ✓ To Educate in Various Embedded Development Strategies
- ✓ To Introduce Bus Communication in processors, Input/output interfacing.
- ✓ To impart knowledge in various processor scheduling algorithms.
- ✓ To introduce Basics of Real time operating system and example tutorials todiscuss on one real time Operating system tool

SYLLABUS

UNIT - I INTRODUCTION TO EMBEDDED SYSTEMS 9

Introduction to Embedded Systems - The build process for embedded systems - Structural units in Embedded processor, selection of processor & memory devices, DMA, Timer and Counting devices - Watchdog Timer - Real Time Clock, Incircuit emulator, Target Hardware Debugging - Embedded Product Development Life Cycle.

UNIT - II EMBEDDED NETWORKING 9

Embedded Networking: Introduction, I/O Device Ports & Buses – Serial Bus communication protocols - RS232 standard – RS422 – RS485, CAN Bus - Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I2C), need for device drivers.

UNIT - III INTRODUCTION TO EMBEDDED WIRELESS TECHNOLOGIES 9

Introduction of Wireless Connectivity, Comparison of Wireless Technologies – WiFi, Zigbee, Bluetooth, LoWPAN, Network Topology and Range, Different Ranges and Applications of Personal – Local - Neighborhood and wide area networks, Internet of Things (IoT) and its applications.

UNIT - IV RTOS BASED EMBEDDED SYSTEM DESIGN 9

Introduction to basic concepts of RTOS – Task - process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communication- shared memory - message passing- Interprocess Communication – synchronization between processes - semaphores, Mailbox, pipes, priority inversion, priority inheritance.

UNIT - V EMBEDDED SYSTEM DESIGN APPLICATION DEVELOPMENT 9

Case Study of Washing Machine - Automotive Application - Smart card System Application - ATM machine - Audio player-Video accelerator - Digital camera, Practical Part: DC motor speed control and display of speed - Stepper motor speed control and display of speed - Temperature measurement and Display - Measurement of power and energy - LED illumination control using PWM, Data communication using Ethernet / USB/ CAN - Wireless data communication using Bluetooth / Zigbee module - Measurement of position and pressure.

COURSE OUTCOMES

On completion of the course, students will be able to

CO1	Tell about internal blocks of Processor.
CO2	Explain the communication buses adopted for Embedded Systems.
CO3	List the concepts of wireless technologies.
CO4	Inspect the multi-tasking ability of Processor.
CO5	Develop Embedded system applications.

TEXT BOOKS

- 1. Rajkamal, 'Embedded System-Architecture, Programming, Design', McGrawHill, 2013
- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013
- 3. Peckol, "Embedded system Design", JohnWiley&Sons, 2010

- 1. EliciaWhite,"Making Embedded Systems",O'Reilly Series,SPD,2011
- 2. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009
- 3. Shibu.K.V, "Introduction to Embedded Systems", TataMcgraw Hill,2009
- 4. Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007
- 5. TammyNoergaard, "Embedded Systems Architecture", Elsevier, 2006
- 6. Refer Datasheet, Technical Documents, and Application notes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	3	1	3	3	3	3	1	1
CO2	3	3	2	2	ı	-	ı	ı	3	ı	3	3	3	3	1	1
CO3	3	3	2	2	-	-		-	3	1	3	3	3	3	2	1
CO4	3	2	1	1	-	-	1	-	3	1	3	3	3	3	1	1
CO5	3	2	1	1	-	-	-	-	3	-	3	3	3	3	1	1

YEAR		III	SEMESTER	V	L	T	P	C
COURSE CO	ODE /	191EE	2521 / ANALOG ELECTR	ONICS AND	3	0	0	3
COURSE TI	TLE		APPLICATIONS		3	U	U	3
			COURSE OBJECT	TIVES				
✓ To	understand	the methods of	f biasing transistors					
✓ To	design and	analyze multist	tage and differential amplifier o	circuits.				
✓ To	analyze the	frequency resp	oonse of amplifiers					
✓ To	explore the	VI characterist	tics of various amplifiers					
✓ To	understand	the internal bu	ilding blocks of power supply					
			SYLLABU	IS .				
UNIT - I		BIA	SING OF DISCRETE BJ	T, FET AND MOS	SFET			9
BJT- Need for	biasing - DO	C Load Line an	d Bias Point – Various biasing	methods of BJT – B	ias Circui	it Design	ı - Therr	nal stability
- Stability facto	rs - Bias co	mpensation tecl	nniques using Diode, Thermiste	or– Various biasing r	nethods o	of JFET	and MO	SFET
UNIT - II			GE AMPLIFIERS AND I					9
			ed Darlington circuit, Cascoo					
	lifiers, Conc	cept of gain ban	dwidth product, Distortion in A	Amplifiers Different	al amnlit	ior meine	DIT 1	
		<u> </u>				ici using	3 DJ I - V	
UNIT - III		I	FREQUENCY RESPONSI	E OF AMPLIFIE	RS			9
Amplifier frequ		nse – Frequenc	FREQUENCY RESPONSI by response of transistor ample	E OF AMPLIFIED ifiers with circuit ca	RS pacitors—	BJT fre	equency	9 response –
Amplifier frequency short circuit cu	rrent gain -	nse – Frequenc cut off frequen	FREQUENCY RESPONSI cy response of transistor ampl $cy - f_{\alpha}$, f_{β} and unity gain band	E OF AMPLIFIED ifiers with circuit ca	RS pacitors—	BJT fre	equency	9 response –
Amplifier frequency responses	rrent gain -	nse – Frequenc cut off frequen	FREQUENCY RESPONSI cy response of transistor ampl $cy - f_{\alpha}$, f_{β} and unity gain band Transistor Switching Times.	E OF AMPLIFIED iffiers with circuit cawidth – Miller effect	RS pacitors—	BJT fre	equency	9 response – FET - High
Amplifier frequency current cu	rrent gain - onse of trans	nse – Frequenc cut off frequenc sistor circuits -	FREQUENCY RESPONSI cy response of transistor ampl cy $-f_{\alpha}$, f_{β} and unity gain band Transistor Switching Times. POWER AMPLI	E OF AMPLIFIED iffiers with circuit cas width – Miller effect	RS pacitors— - frequen	BJT fre	equency onse of	9 response – FET - High
Amplifier frequency responsible UNIT - IV Classification -	rrent gain - onse of trans - Class A/B	nse – Frequenc cut off frequencistor circuits - '/AB/C - single	FREQUENCY RESPONSI cy response of transistor ampl $cy - f_{\alpha}$, f_{β} and unity gain band Transistor Switching Times.	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip	pacitors— - frequen	BJT frency resp	equency onse of wer and	9 response – FET - High 9 conversion
Amplifier frequency responsible to the control of t	rrent gain - onse of trans - Class A/B, omplementa	nse – Frequenc cut off frequencistor circuits - '/AB/C - single ary-symmetry p	FREQUENCY RESPONSICY response of transistor amplicy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLICATION on the pull configuration of the property of the pr	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Disto D REGULATOR	pacitors— - frequent -	BJT frency responses	equency onse of wer and ions of	response – FET - High g conversion Distortion 9
Amplifier frequency responsible to the control of t	rrent gain - onse of trans - Class A/B, omplementa	nse – Frequence cut off frequencistor circuits - //AB/C - single bry-symmetry p RE of power sup	FREQUENCY RESPONSICY response of transistor amplicy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLICATION on the Property of	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Disto D REGULATOR we Rectifiers - Ripp	pacitors— - frequent oation, outportions— S lee factor	BJT from the street of the str	equency onse of wer and ions of	response – FET - High conversion Distortion g exectification
Amplifier frequency responsible to the control of t	rrent gain - onse of trans Class A/B omplementa ck diagram F - Filters -	nse – Frequence out off frequencistor circuits - //AB/C - single ary-symmetry p RE of power sup L, C and π type	FREQUENCY RESPONSICY response of transistor amplicy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLICATION on the Power amplifiers – MOSFET power amplifiers – MOSFET power amplifiers, FILTERS AND Poly-Half wave and Full wave efilters - Ripple factor and response to the power amplifiers in the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave and Full wave efilters - Ripple factor and response to the poly-Half wave efilters - Ripple factor and response to the poly-Half wave efilters - Ripple factor and response to the poly-Half wave efilters - Ripple factor and response to the poly-Half wave efilters - Ripple factor and response to the poly-Half wave efilters - Ripple factor and response to the poly-Half wave efilters - Ripple factor and response to the poly-Half wave effects - Ripple factor and response to the poly-Half wave effects - Ripple factor and response to the poly-Half wave effects - Ripple factor and response to the poly-Half wave effects - Ripple factor and response to the poly-Half wave effects - Ripple factor eff	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Disto D REGULATOR ve Rectifiers - Ripp gulation - Voltage R	pacitors— - frequent pation, outportions— Solle factor egulators	BJT frency responds the structure of the	equency onse of wer and ions of	response – FET - High g conversion Distortion g tectification unt Voltage
Amplifier frequency responsible to the control of t	rrent gain - onse of trans Class A/B omplementa ck diagram F - Filters -	nse – Frequence out off frequencistor circuits - //AB/C - single ary-symmetry p RE of power sup L, C and π type	FREQUENCY RESPONSI cy response of transistor ampl cy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLI ended and Push-pull configur ower amplifiers – MOSFET po CTIFIERS, FILTERS AN oply-Half wave and Full wave e filters - Ripple factor and re- con circuits-Switched Mode Pow	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Diste D REGULATOR ve Rectifiers - Ripp gulation - Voltage R ver Supplies - Troubl	pacitors— - frequent pation, outportions— Solle factor egulators	BJT frency responds the structure of the	equency onse of wer and ions of	response – FET - High conversion Distortion g tectification unt Voltage
Amplifier frequency responsible to the control of t	rrent gain - onse of trans - Class A/B, omplementa ck diagram F - Filters - urrent limitin	nse – Frequence cut off frequencistor circuits - Δ/AB/C - single ary-symmetry p RE of power sup L, C and π typing and protection	FREQUENCY RESPONSICY response of transistor amplicy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLICATION OF THE POWER AMPLICATION OF THE POWER AND POWER AMPLICATION OF THE POWER AND	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Diste D REGULATOR ve Rectifiers - Ripp gulation - Voltage R ver Supplies - Troubl	pacitors— - frequent pation, outportions— Solle factor egulators	BJT frency responds the structure of the	equency onse of wer and ions of	response – FET - High g conversion Distortion g tectification unt Voltage
Amplifier frequency responsive to the control of th	rrent gain - onse of trans - Class A/B, omplementa ck diagram F - Filters - arrent limitin	nse – Frequence cut off frequencistor circuits - '/AB/C - single ary-symmetry p RE of power sup L, C and π typing and protection	FREQUENCY RESPONSICY response of transistor amplicy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLICATION OF THE POWER AMPLICATION OF THE POWER AND POWER AMPLICATION OF THE POWER AND	E OF AMPLIFIED iffiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Disto D REGULATOR we Rectifiers - Ripp gulation - Voltage R wer Supplies - Troubl DMES	pacitors— - frequent pation, outportions— Solle factor egulators	BJT frency responds the structure of the	equency onse of wer and ions of	response – FET - High conversion Distortion g tectification unt Voltage
Amplifier frequency responsive to the control of th	rrent gain - onse of trans - Class A/B, omplementa ck diagram F - Filters - urrent limitin of the cours uire the fund	Inse – Frequence out off frequencistor circuits - Δ/AB/C - single bry-symmetry processor of power supply and protection of the protection of the power supply and protection of the power supply and protection of the protection of the power supply and protection of the protection of	FREQUENCY RESPONSICY response of transistor amplicy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLICATION over amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – RILTERS AND poly-Half wave and Full wave efficients – Ripple factor and responsive countries. Switched Mode Power COURSE OUTCO to be able to	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Diste D REGULATOR ve Rectifiers - Ripp gulation - Voltage R ver Supplies - Troubl DMES s.	pacitors— - frequent pation, outportions— Solle factor egulators	BJT frency responds the structure of the	equency onse of wer and ions of	response – FET - High conversion Distortion g tectification unt Voltage
Amplifier frequency responsive to the control of th	rrent gain - onse of trans - Class A/B, omplementa ck diagram F - Filters - urrent limitin of the cours ure the fund gn and analy	nse – Frequence cut off frequencistor circuits - 'AB/C - single ary-symmetry p RE of power sup L, C and π typing and protection e, students will amental concepts are single of multistages.	FREQUENCY RESPONSICY response of transistor amplicy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLICATION over amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – Ripple factor and responsive to the filters – Ripple factor and responsive to the control of the power amplifiers of the power course. Switched Mode Power amplifiers – Ripple factor and responsive to the power course. The power course of the power course of the power amplifiers and the effects of the power amplifiers amplifiers and the effects of the power amplifiers amplifiers amplifiers amplified the power amplifiers and the effects of the power amplifiers amplified the	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Diste D REGULATOR ve Rectifiers - Ripp gulation - Voltage R ver Supplies - Troubl DMES s.	pacitors— - frequent pation, outportions— Solle factor egulators	BJT frency responds the structure of the	equency onse of wer and ions of	response – FET - High g conversion Distortion g tectification unt Voltage
Amplifier frequency responsive to the control of th	rrent gain - onse of trans - Class A/B, omplementa ck diagram - Filters - urrent limitin of the cours ure the fund gn and analy yze frequence	Inse – Frequence cut off frequencistor circuits - // AB/C - single ary-symmetry p RE of power sup L, C and π typing and protection e, students will amental concepts of multistage cy response of a	FREQUENCY RESPONSICY response of transistor amplicy – f_{α} , f_{β} and unity gain band Transistor Switching Times. POWER AMPLICATION over amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – MOSFET power amplifiers – Ripple factor and responsive to the filters – Ripple factor and responsive to the control of the power amplifiers of the power course. Switched Mode Power amplifiers – Ripple factor and responsive to the power course. The power course of the power course of the power amplifiers and the effects of the power amplifiers amplifiers and the effects of the power amplifiers amplifiers amplifiers amplified the power amplifiers and the effects of the power amplifiers amplified the	E OF AMPLIFIED ifiers with circuit ca width – Miller effect FIERS ration - Power dissip ower amplifier - Diste D REGULATOR ve Rectifiers - Ripp gulation - Voltage R ver Supplies - Troubl DMES s.	pacitors— - frequent pation, outportions— Solle factor egulators	BJT frency responds the structure of the	equency onse of wer and ions of	response – FET - High g conversion Distortion g tectification unt Voltage

- 1. Donald. A. Neamen, Electronic Circuits Analysis and Design, 3rd Edition, McGraw Hill Education (India) Private Ltd., 2010.
- 2. Boylestad L Robert and Nashelsky Louis, —Electronic Devices and circuits, Prentice Hall of India, New Delhi, 2009.

- 1. Floyd, Electronic Devices, Ninth Edition, Pearson Education, 2012.
- 2. David A Bell, —Electronic Devices and Circuitsl, Prentice Hall of India, New Delhi, 2008.
- 3. Microelectronic Circuits-Sedra A.S. and K.C. Smith, Oxford University Press, Sixth Edition.
- 4. Integrated Electronics- J. Millman and C.C. Halkias, Tata Mc Graw- Hill, 1972.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	3	-	3	3	3	3	1	1
CO2	3	2	1	1	-	-	-	-	3	-	3	3	3	3	1	1
CO3	3	3	2	2	-	-	-	-	3	-	3	3	3	3	2	1
CO4	3	3	2	2	-	-	-	-	3	-	3	3	3	3	2	1
CO5	3	2	1	1	-	-	-	_	3	-	3	3	3	3	1	1

YEAR III SEMESTER V L T P														
COTTO CO CO CO /	Ш	SEMESTER	V	L	T	P	С							
COURSE CODE / COURSE TITLE	19	1EE522 / POWER ELEC	CTRONICS	3	0	0	3							
		COURSE OBJE	CTIVES											
	ompare outpu	ctures of Power semi-conduct at average expressions for variets												
• •		SYLLAI	BUS											
UNIT - I POWER SEMI - CONDUCTOR DEVICES														
Introduction- Power diodes-construction – types, forward and reverse characteristics, Power BJTs – construction characteristics-switching characteristics, Thyristors – construction and static characteristics – Two transistor analogy MOSFETs- Power IGBTs- structure and operation- static and switching characteristics														
UNIT - II		AC TO DC CO	NVERTERS				9							
UNIT - II AC TO DC CONVERTERS Review of Uncontrolled Rectifiers, 1-pulse, 2-pulse, 3-pulse and 6-pulseconverters with R, RL and FWD, performance para – Effect of source inductance–Applications-light dimmer, Excitation system, Solar PV systems														
UNIT - III		DC TO AC CO					9							
Single Phase and Three Phas Applications-Induction heating		ource Inverters, Current source	e inverter, PWM Schei	mes, Frequ	uency ar	nd Volta	ge Control,							
UNIT - IV		DC-DC & AC-AC C	ONVERTERS				9							
Buck, Boost & Buck-Boost controller and Cyclo converte	er-Application	ns –Welding		Sattery ope	erated ve	ehicles,	AC voltage							
UNIT - V		PROTECTION AND DE					9							
Triggering and commutation Driver and snubber circuits-F		parameters of rectifiers		converters	, Rectifi	ers, Intr	oduction to							
		COURSE OUT	COMES											
On completion of the course	students wil	l be able to												
On completion of the course, CO1 Identify the device														
	performance	based on its Characteristics												

1. M D Singh and K B Khanchandani, Power Electronics, Tata McGraw-Hill, 2008.

Summarize about protection, commutation and Driver systems.

Examine chopper circuits for various quadrants of operation.

2. P.S. Bimbra, Power Electronics- Khanna Publishers, 3rd Edition, 2004

CO₄

CO₅

- 3. Ned Mohan, Tore M. Undeland and William P.Robbins, Power Electronics: Converters, Applications and Design, John Wiley and Sons, 2003.
- 4. Ashfaq Ahmed 'Power Electronics for Technology', Pearson Education, Indian reprint, 2003.

- 1. Joseph Vithayathil,' Power Electronics, Principles and Applications', McGraw Hill Series, 6th Reprint, 2013.
- 2. L. Umanand, Power Electronics: Essentials and Applications- Wiley India, 2009
- 3. V.R.Moorthi, 'Power Electronics- Devices, Circuits and Industrial Applications', Oxford University Press, 1st Edition, 2005.
- 4. M.H. Rashid, Power Electronics: Circuits, Devices and Application, second edition, Prentice Hall of India, 2004.
- 5. Vedam Subramaniam, 'Power Electronics', New Age International (P) Ltd Publishers, 2001

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	-	-	-	3	-	3	3	3	3	2	1
CO2	3	3	2	2	-	-	-	-	3	-	3	3	3	3	2	1
СОЗ	3	2	1	1	-	-	-	-	3	-	3	3	3	3	1	1
CO4	3	2	1	1	-	-	-	-	3	-	3	3	3	3	1	1
CO5	3	2	1	1	-	ı	-	-	3	-	3	3	3	3	1	1

YEAR	III	SEMESTER	V	L	T	P	C
COURSE CODE / COURSE TITLE	191EE523 /	TRANSMISSION AND DIS	STRIBUTION	3	0	0	3

- To study the structure of electric power system, EHVAC, HVDC transmission and FACTs.
- To develop expressions for the computation of transmission line parameters.
- To obtain the equivalent circuits for the transmission lines based on distance and to determine voltage regulation and efficiency.
- To analyze the voltage distribution in insulator strings to improve the efficiency, and to studythe types, construction of cables and methods to improve the efficiency.
- To study about distribution systems, types of substations and calculations of voltage at a point on the given type of distribution System.

SYLLABUS

UNIT - I INTRODUCTION

Introduction - Structure of Electric Power System -Advantages of higher operating voltage. Different Operating Voltages of Generation, Transmission, and Distribution, Introduction to EHV AC Transmission, HVDC Transmission and FACTs.

UNIT - II TRANSMISSION LINE PARAMETERS

Electrical constants - Resistance, Inductance and capacitance of Single and 3 Phase lines - Effects of earth on capacitance - Skin effect - Proximity effect - Transposition - Bundled conductors - Typical Configuration of Line Supports and Conductor Types. Corona -Factors affecting corona

MODELLING AND PERFORMANCE OF TRANSMISSION LINES UNIT - III

Short and medium transmission lines - Phasor diagrams - Nominal T and Pi methods - Line regulation - Efficiency. Rigorous solution for long line - ABCD constants - Ferranti effect - Tuned power lines - Surge impedance and surge impedance loading.

UNIT - IV LINE INSULATORS & CABLES

Insulators - Types - Potential distribution over a string of suspension insulators - Methods of increasing string efficiency - Testing of insulators – Stress and Sag in overhead lines – causes.

Cables: Construction & types- Capacitance and insulation resistance - Sheath effects - Grading - Stresses - Comparison between overhead lines and underground cables.

UNIT - V **DISTRIBUTION SYSTEMS**

Substations and its Types - Typical Key Diagram of a 11kV / 400V Substation, Feeders, distributors and service main - Radial and ring main systems - Calculation of voltage in distributors with concentrated and distributed loads-AC single phase and three phase systems.

COURSE OUTCOMES

On completion of the course, students will be able to

CO₁ Analyze the basic structure of Electric Power system. CO₂ Evaluate the computation of Transmission Line parameters. CO₃ Determine the equivalent circuit for different transmission line based on distance. CO₄ Examine the voltage distribution in Insulator string. CO₅ Summarize about the types of sub-stations.

TEXT BOOKS

- 1. Mehta V K, Rohit Mehta, "Principles of Power Systems", S.Chand& Co., New Delhi, 2011
- 2. C.L.Wadwa, "Electrical Power system" New Age International, 6th Edition 2010
- 3. Duncan Glover J, Mulukutla S. Sarma, Thomas Jeffrey Overbye, Thomas J. Overbye, "Power System Analysis and Design", Thomson Learning, New Delhi, 2008
- 4. C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age International Publishers, Second Edition, 2006

- 1. Soni M L, Gupta P V, Bhatnagar U S and Chakrabarthi A, "A Text Book on Power System Engineering", Dhanpat Rai & Co., New Delhi, 2013
- 2. Uppal S L, "Electrical Power Systems", Khanna Publishers, New Delhi, 2009
- 3. Kothari D P and Nagrath J, "Power System Engineering", Tata McGraw-Hill, New Delhi, 2008
- 4. S.N. Singh, "Electric Power Generation, Transmission and Distribution", Prentice Hall of India, ISBN (978-81-203-36508), Second edition 2008

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	-	-	-	3	-	3	3	3	3	2	1
CO2	3	3	2	2	-	-	-	-	3	ı	3	3	3	3	2	1
СОЗ	3	2	1	1	-	-	-	-	3	-	3	3	3	3	1	1
CO4	3	3	2	2	-	-	-	-	3	1	3	3	3	3	2	1
CO5	3	2	1	1	-	-	-	-	3	1	3	3	3	3	1	1

YEAR		III	SEMESTER	V	L	T	P	C						
	SE CODE / SE TITLE	191EF	E51A / EMBEDDED LABOR	RATORY	0	0	2	1						
			COURSE OBJECTIV	ES										
✓	To understand th	ne basic of Emb	edded systems											
✓	To have hands o	on experience w	ith Software											
			LIST OF EXPERIME	NTS										
1	Study of ARM evaluation system													
2	Interfacing ADC and DAC													
3	Interfacing LED and PWM													
4	Interfacing real time clock and serial port													
5	Interfacing keyboard and LCD													
6	Interfacing EPRO	OM and interrup	t											
7	Mailbox													
8			stics of ARM and FPGA											
9	Flashing of LEDS													
10	Interfacing steppe		•											
11	Implementing zig	gbee protocol wi												
			COURSE OUTCOM	ES										
	pletion of the cours													
CO1	Write programs i	in ARM for spec	eific applications.											
CO2	Interface various	peripherals usir	ng ARM processors.											
CO3	Rule on Hardwar	re control using	Embedded Software's.											

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	3	-	-	-	-	-	-	3	3	2	2	2
CO2	3	3	2	2	3	-	-	-	-	-	-	3	3	3	2	2
CO3	3	2	2	2	3	-	I	-	-	-	-	3	3	2	2	2

YEAR		III	SEMESTER	V	L	T	P	C						
	SE CODE / SE TITLE	191EE52A /	CONTROL AND INSTRUI LABORATORY	MENTATION	0	0	2	1						
			COURSE OBJECTIV	ES										
✓	To understand al	bout the necessit	ty of control systems.											
✓	To understand th	ne concepts of b	ridge networks and signal condi	tioning circuits.										
	LIST OF EXPERIMENTS													
1	Measurement of	displacement me	easurement using LVDT.											
2	Study of DC and	AC bridges												
3	Measurement of	Strain in a cantil	ever beam using strain gauges											
4	Measurement of	Temperature(The	ermistor / RTD)											
5	Study of P, PI an	Study of P, PI and PID controllers in feedback system.												
	Signal Condition													
6	(a) Instrumentation	-												
		<u> </u>	to Analog converters (ADC and l	DACs)										
7	Measurement of	Flow												
8	Measurement of													
9	Synchro Transmi	itter- Receiver an	d Characteristics											
On comp	letion of the cours	se, students will b	course outcombe able to	ES										
CO1	Understand contr	rol theory and ap	ply them to electrical engineering	g problems.										
CO2	Examine the bas	ic concepts of br	idge networks and transducers.											
CO3	Interpret the basi	ics of signal cond	litioning circuits.											

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	3	-	-		-	-	-	3	2	2	2	2
CO2	3	2	2	2	3	-	-	-	-	-	-	3	3	3	1	2
CO3	3	2	2	2	3	-	-	-	-	-	-	3	2	2	1	2

YEAR		III	SEMESTER	V	L	T	P	C						
	SE CODE / SE TITLE	1911	MC56A / CIRCUIT SIMULA LABORATORY	ATION	0	0	2	1						
			COURSE OBJECTIV	ES										
✓	To understand th	ne basic laws of	Electrical Engineering											
✓	To have hands o	on experience wi	th Simulation											
✓	To gain concepts	s of Semi-condu	ctor devices with simulation											
			LIST OF EXPERIMEN	NTS										
1	Verification of O	Verification of Ohm's and Kirchhoff's Law												
2	Circuit analysis using Mesh current Method													
3	Circuit analysis using Nodal Voltage Method													
4	Verification of T													
5			ndependently) using MATLAB											
6			ion of rectifier circuits using MA	TLAB										
7	Simulation of Th	yristor Switch												
8		<u> </u>	vave Bridge Rectifier											
9	Simulation of Sir	ngle-phase Half	Bridge Inverter											
10	Simulation of Sir	ngle-phase Full I	Bridge Inverter											
			COURSE OUTCOM	ES										
On comp	oletion of the cours	se, students will b	be able to											
CO1	Recall basic law	of Electric Circu	its using simulation.											
CO2	Inspects systems	with various sin	nulation parameters.											
CO3	Interpret Circuit	simplification co	oncepts using simulation.											

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	3	-	-	-	-	-	-	3	2	3	2	2
CO2	3	2	2	2	3	1	ı	-	-	-	-	3	2	3	2	2
CO3	3	3	2	2	3	ı	ı	-	-	-	-	3	2	3	2	2

YEAR	III	SEMESTER	VI	L	T	P	C
COURSE CODE /	191HS601	/ INDUSTRIAL MANAGE	MENT AND	2	Λ	•	2
COURSE TITLE		ECONOMICS		3	U	U	3

- ✓ To impart the knowledge on fundamental of Industrial Management and Economics.
- ✓ To understand about the theory and demand of supply.
- ✓ To analyze the Indian financial system.

SYLLABUS

UNIT - I MODERN CONCEPT OF MANAGEMENT

9

Concept of Management - Functions of management-Planning-Organizing- Staffing-Directing- Motivating- Communicating-Coordinating- Controlling-Organizational structures- Line and staff functional relationships- Span of control- Delegation-Management by Objectives.

UNIT - II

PERSONNEL MANAGEMENT

9

Objectives and functions of Personnel Management- Recruitment and Selection- Training and Development -Labour Welfare-Industrial Disputes-Trade Unions- Quality circles. Formation of Companies: Proprietary – Partnership-Joint stock companies-Public Sector – Private Sector.

UNIT - III

MARKETING MANAGEMENT

9

Marketing Definition - Marketing Mix - Product - Price - Place - Promotion - Market research- Segmentation - Targeting - Positioning - Production Concept - Product Concept - Selling Vs Marketing - Advertisement and Sales Promotion.

UNIT - IV THEORY OF DEMAND AND SUPPLY

9

Law of demand and supply- Pricing Mechanism- Factors of production- Land, Labour, capital and organization- National Income - Taxation- Direct and Indirect Taxes - Progressive and Regressive - Inflation-Causes and consequences - Supply Chain Management.

UNIT - V

INDIAN FINANCIAL SYSTEM

9

Reserve bank of India: Functions- Commercial banking system-Development financial institutions- Investment institutions- Insurance companies- Indian capital market- Stock market - Role of the public sector- Privatization- Multinational corporations and their impact on the Indian economy.

COURSE OUTCOMES

On completion of the course, students will be able to

- CO1 Understand modern concept of management
- CO2 Analyse the Recruitment and Selection process
- CO3 Suggest market research concepts
- **CO4** Summarize the Direct and indirect tax details
- CO5 Learn Indian financial system

TEXT BOOKS

- 1. Agarwal.A.N, Agarwal.M.K," Indian economy ", New Age International Publishers, 2019
- 2. Khanna.O.P," Industrial Engineering and Management ", Dhanpat Rai Publications, 2018.

- 1. Philip Kotler, Keven Lane Keller," Marketing Management", Pearson, 2017.
- 2. Ahuja.K.K, "Industrial Management and Organizational Behaviour", Khanna Publishers, 1998.
- 3. Dewett.K.K," Modern economic theory", Shyam Lal charitable trust, 1995.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	1	1	1	-	2	2	2	2	1	2	2	2	2	1	1
CO2	3	3	2	2	-	3	2	3	3	3	3	3	1	3	2	1
СОЗ	3	2	1	1	-	3	2	3	3	2	3	3	2	3	1	1
CO4	2	1	1	1	-	2	2	2	2	1	2	2	1	2	1	1
CO5	2	1	1	1	-	2	2	2	2	1	2	2	2	2	1	1

YEAR	III	SEMESTER	VI	L	T	P	C
COURSE CODE / COURSE TITLE	191EE6	21 / DIGITAL SIGNAL PRO	OCESSING	3	0	0	3

- ✓ To classify signals and systems and its mathematical representation.
- ✓ To analyze the discrete time systems.
- ✓ To study various transformation techniques and computation.
- ✓ To study about filters and design for digital implementation.
- To study about a programmable digital signal processor and quantization effects.

SYLLABUS

UNIT - I INTRODUCTION 9

Classification of systems: Continuous, discrete, linear, causal, stable, dynamic, recursive, time variance; classification of signals: continuous and discrete, energy and power; sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect. Digital signal representation and analog to digital conversion.

UNIT - II DISCRETE TIME SYSTEM ANALYSIS

Z-transform and its properties, inverse z-transforms; difference equation – Solution by z-transform, application to discrete systems

9

- Stability analysis, frequency response – Convolution – Analysis of L TI Systems in z-domain. Introduction to two-dimensional z-transform.

UNIT - III DISCRETE FOURIER TRANSFORM AND COMPUTATION 9

Discrete Fourier Transform- properties, magnitude and phase representation -Computation of DFT using FFT algorithm – DIT &DIF using radix 2 FFT – Butterfly structure.

UNIT - IV DESIGN OF DIGITAL FILTERS 9

FIR & IIR filter realization – Parallel & cascade forms. FIR design: Windowing Techniques – Need and choice of windows – Linear phase characteristics

IIR design: Analog filter design - Butterworth and Chebyshev approximations; digital design using impulse invariant and bilinear transformation - Warping, prewarping - Frequency transformation.

UNIT - V DIGITAL SIGNAL PROCESSORS 9

Architecture – Features – Addressing Formats – Functional modes – Instruction Set– Quantization error-Finite word length effects in designing digital filters.

COURSE OUTCOMES On completion of the course, students will be able to CO1 Acquire knowledge on Signals and systems & their mathematical representation. CO2 Understand and analyze the discrete time systems. CO3 Analyze the transformation techniques & their computation. CO4 Understand the types of filters and their design for digital implementation CO5 Acquire knowledge on programmability digital signal processor & quantization effects

TEXT BOOKS

- 1. S.K. Mitra, 'Digital Signal Processing A Computer Based Approach', McGraw Hill Edu, 2018
- 2. Lonnie C.Ludeman, "Fundamentals of Digital Signal Processing", Wiley, 2017.
- 3. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithms and Applications', Pearson Education, New Delhi, PHI. 2015.
- 4. Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, "Discrete Time Signal Processing", Pearson Education, New Delhi, 2013.

- 1. Dimitris G.Manolakis, Vinay K. Ingle, applied Digital Signal Processing, Cambridge, 2018
- 2. Johny R. Johnson, "Introduction to Digital Signal Processing", PHI, 2014
- 3. Poorna Chandra S, Sasikala. B, Digital Signal Processing, Vijay Nicole/TMH, 2013.
- 4. SenM.kuo, woonseng...s.gan, "Digital Signal Processors, Architecture, Implementations & Applications, Pearson, 2013
- 5. Taan S. ElAli, 'Discrete Systems and Digital Signal Processing with Mat Lab', CRC Press, 2013.
- 6. Robert Schilling & Sandra L.Harris, Introduction to Digital Signal Processing using Matlab", Cengage Learning, 2012.
- 7. B.P.Lathi, 'Principles of Signal Processing and Linear Systems', Oxford University Press, 2010

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	-	-	-	3	3	3	1	1
CO2	3	3	2	2	-	ı	-	-	ı	-	-	3	3	3	2	1
CO3	3	3	2	2	-	1	-	-	1	-	-	3	3	3	2	1
CO4	3	2	1	1	-	-	-	-	-	-	-	3	3	3	1	1
CO5	3	2	1	1	-	-	-	-	-	-	-	3	3	3	1	1

YEAR	III	SEMESTER	VI	L	T	P	C
COURSE CODE / COURSE TITLE	191EE	2622 / POWER SYSTEM AN	NALYSIS	3	0	0	3

- \checkmark To understand and develop Y_{bus} and Z_{bus} matrices.
- ✓ To understand and apply iterative techniques for power flow analysis.
- ✓ To model and carry out short circuit studies on power system.
- ✓ To model and analyze stability problems in power system.
- ✓ To model the power system under steady state operating condition.

SYLLABUS

UNIT - I POWER SYSTEM NETWORK MATRICES 9

Power system components, representation - Single line diagram - per unit quantities, per unit impedance diagram, per unit reactance diagram - Network graph, Bus incidence matrix, Primitive parameters, Bus admittance matrix from primitive parameters - Representation of off-nominal transformer - Formation of bus admittance matrix of large power network - Formation of Y_{bus} : Direct and Singular Transformation Methods- Formation of Z_{bus} , Numerical Problems.

UNIT - II POWER FLOW STUDIES 9

Introduction - Bus classification - Formulation of Power Flow problem in real and polar coordinates - Power flow solution using Gauss Seidel method - Handling of Voltage controlled buses - Power Flow Solution by Newton Raphson method.

UNIT - III SYMMETRICAL FAULT ANALYSIS 9

Introduction, Transient on a Transmission Line, Short Circuit of a Synchronous Machine (On No Load), Short Circuit of a Loaded Synchronous Machine, Selection of Circuit Breakers. Assumptions in short circuit analysis - Symmetrical short circuit analysis using Thevenin's theorem – Symmetrical fault analysis through bus impedance matrix - Post fault bus voltages - Fault level – Current limiting reactors.

UNIT - IV UNSYMMETRICAL FAULT ANALYSIS 9

Introduction- Symmetrical components - Sequence impedances - Sequence networks - Symmetrical Component Analysis of Unsymmetrical Faults, Single Line-To-Ground (LG) Fault, Line-To-Line (LL) Fault, Double Line-To-Ground (LLG) Fault, Open Conductor Faults - unsymmetrical fault occurring at any point in a power system - computation of post fault currents in symmetrical component and phasor domains.

UNIT - V POWER SYSTEM STABILITY ANALYSIS 9

Introduction, Dynamics of a Synchronous Machine, Power Angle Equation Salient and Non – Salient pole Synchronous Machines, Simple Systems, Steady State Stability, Transient Stability, Equal Area Criterion, Factors Affecting Transient Stability. Classification of power system stability –Swing equation – Swing curve - Power-Angle equation – Equal area criterion - Critical clearing angle and time Classical step-by-step solution of the swing equation – modified Euler method.

COURSE OUTCOMES

On completion of the course, students will be able to

- CO1 Develop the Y_{bus} and Z_{bus} matrices.
- CO2 Understand and apply iterative techniques for power flow analysis.
- CO3 | Model and understand various power system components and carry out power flow, short circuit.
- **CO4** Model and analyze stability problems in power system.
- **CO5** Model the power system under steady state operating condition.

TEXT BOOKS

- 1. John J. Grainger, William D. Stevenson, Jr, 'Power System Analysis', Mc Grew Hill Education (India) Private Limited, New Delhi, 2015
- 2. HadiSaadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010
- 3. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008

- 1. J. Duncan Glover, MulukutlaS.Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012
- 2. Kundur P., 'Power System Stability and Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010
- 3. Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007
- 4. Gupta B.R., 'Power System Analysis and Design', S. Chand Publishing, 2001

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	ı	1	-	-	-	-	3	3	3	3	1	1
CO2	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1
CO3	3	2	1	1	1	ı	1	-	ı	-	3	3	3	3	1	1
CO4	3	2	1	1	ı	ı	ı	-	ı	-	3	3	3	3	1	1
CO5	3	2	1	1	1	-	1	-	-	-	3	3	3	3	1	1

YEAR	III	SEMESTER	VI	L	T	P	C
COURSE CODE / COURSE TITLE	191	EE623 / SOLID STATE DR	IVES	3	0	0	3

- ✓ To apply power electronic converters to control the speed of DC motors.
- ✓ To describe the operation and performance of AC motor drives.
- ✓ To design the current and speed controllers for a closed loop solid state DC motor drives.

SYLLABUS

UNIT - I DYNAMICS OF ELECTRICAL DRIVES

9

Parts and choice of Electric drives – Advantages of solid-state electric drives – Equations governing motor load dynamics, Equivalent values of drive parameters, load with rotational motion, loads with translational motion – steady state stability – multi quadrant dynamics: acceleration, deceleration, starting & stopping – typical load torque characteristics–Selection of motor power rating.

UNIT - II DC MOTOR DRIVES 9

Steady state analysis of the single and three phase fully controlled and half controlled rectifier fed separately excited DC motor drive – continuous and discontinuous conduction – Time ratio and current limit control – 4 quadrant operation of converter /chopper fed drive-Applications.

UNIT - III

INDUCTION MOTOR DRIVES

9

Stator voltage control – V/f control – Static control of Rotor Resistance - qualitative treatment of slip power recovery drives - closed loop control - Vector control-Different types of braking, dynamic, regenerative and plugging - Applications.

UNIT - IV

SYNCHRONOUS MOTOR DRIVES

9

V/f control and self-control of synchronous motor: Margin angle control and power factor control - Three phase voltage/current source fed synchronous motor - Applications.

UNIT - V

DESIGN OF CONTROLLERS FOR DRIVES

9

Modes of operation, speed control and drive classifications - Transfer function for DC motor / load and converter - closed loop control with curr.ent and speed feedback - armature voltage control and field weakening mode - Design of controllers, current controller and speed controller-converter selection and characteristics.

COURSE OUTCOMES

On completion of the course, students will be able to

- CO1 Illustrate the steady state operation and transient dynamics of a motor load system.
 CO2 Compare the operation of the converter/chopper fed dc drive, both qualitatively and quantitatively.
 CO3 Demonstrate the VSI fed of Induction Motor drives.
 CO4 Distinguish the different control strategies of Synchronous Motor drives.
 - CO5 Analyze the current and speed controllers for a closed loop solid state DC motor Drive.

TEXT BOOKS

- 1. V.Sekar, "Solid State Drives", SIA Publishers, First Edition, 2020
- 2. Vedam Subramanyam, "Electric Drives Concepts and Applications", Second Edition, McGraw Hill, 2016.
- 3. Bimal K.Bose. "Modern Power Electronics and AC Drives", Pearson Education, 2002.

- 1. Theodore Wildi, "Electrical Machines, Drives and power systems", 6th edition, Pearson Education, 2015.
- 2. Shaahin Felizadeh, "Electric Machines and Drives", CRC Press (Taylor and Francis Group), 2013.
- 3. John Hindmarsh and Alasdain Renfrew, "Electrical Machines and Drives System", Elsevier, 2012.
- 4. P.K.SEN, "Electric drives" PHI, 2012.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	3	3	-	3	-	3	3	3	3	1	1
CO2	3	3	2	2	-	3	3	-	3	-	3	3	3	3	2	1
СО3	3	3	2	2	-	3	3	-	3	-	3	3	3	3	2	1
CO4	3	3	2	2	-	3	3	-	3	-	3	3	3	3	2	1
CO5	3	3	2	2	-	3	3	1	3	1	3	3	3	3	2	1

YEAR		III	SEMESTER	VI	L	T	P	C						
	SE CODE / SE TITLE	191EE62A	A / POWER SYSTEMS LAB	ORATORY	0	0	2	1						
			COURSE OBJECTIV											
			power system analysis through d	ligital simulation.										
			power system analysis.											
✓	To find out the types of fault in the power system.													
	LIST OF EXPERIMENTS													
1	Equivalent circuit of a Transmission lines.													
2	Determination of voltage and power at the sending end, voltage regulation using medium line model.													
3	Determination of line performance when loaded at receiving end.													
4	Formation of bus Admittance matrix.													
5	Load flow Soluti	on using Gauss S	Seidel Method.											
6	Load flow solution	on using Newton	Raphson method in Rectangular	Coordinates.										
7	Optimal Econom	ic Dispatch with	Losses and without Losses.											
8	Three phase shor	t circuit analysis	in a Synchronous Machine.											
9	Unsymmetrical F	Fault Analysis.												
10	Z bus Building A	lgorithm.												
11	Load Frequency	control of a singl	e area system.											
12	Load frequency c	control of two are	ea systems.											
			COURSE OUTCOMI	ES										
On comp	oletion of the cours	e, students will b												
CO1	Inspect Transform	mer operation us	ing Medium line model.											
CO2														
CO3	Deduct short circ													

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1
CO2	3	2	1	1	-	-	-	-	ı	-	3	3	3	3	1	1
СО3	3	2	1	1	-	-	-	-	-	-	3	3	3	3	1	1

YEAR		III	SEMESTER	VI	L	T	P	C
	SE CODE / SE TITLE	191EE62B	POWER ELECTRONICS LA	BORATORY	0	0	2	1
			COURSE OBJECTIV	ES				
✓	To understand the	e basic circuits of	of semi-conductor devices.					
✓	To have hands on	n experience with	h Rectifiers, Inverters and chop	pers.				
			LIST OF EXPERIMENT	NTS				
1	Generation of gat	te pulse using R,	RC and UJT circuits					
2	Characteristics of	f MOSFET and I	GBT					
3	Characteristics of	f SCR and TRIA	С					
4	Half controlled a	nd fully controlle	ed rectifier					
5	Step down and st	tep up MOSFET	based choppers					
6	AC Voltage cont	rollers						
7	IGBT based sing	le phase PWM ir	rverter					
8	IGBT based three	e phase PWM in	verter					
9	Characteristics of	f PMBLDC moto	or					
10	Simulation of thr circuits.	ree phase semi co	onverter, three phase full converte	er, DC-DC convert	er and A	C volta	ge contr	oller
	COURSE OUTCOMES							
	pletion of the cours							
CO1	Outline about se							
CO2	Design circuits,	and to function e	ffectively as an individual or in to	eam to demonstrate	e the circ	cuits		
CO3	Relate various po	ower electronic d	levices with their characteristics					

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	-	-	-	-	3	2	3	3	1	1
CO2	3	2	1	1	-	-	-	-	-	-	3	2	3	3	1	1
СО3	3	2	1	1	-	-	-	-	-	-	3	2	3	3	1	1

YEAR	III	SEMESTER	VI	L	T	P	C
COURSE CODE / COURSE TITLE	1	91MC66A / INTERNSHI	P 2	0	0	0	0
		COURSE OBJECTIV	VES				
✓	To develop	the skills in cutting edge t	echnologies in 1	the ind	lustry		
✓	✓ To acquire knowledge to work smooth in industry						
✓ To get through the placement interviews							

DEMONSTRATION

The students may undergo Internship at Research organization / University (after due approval from the Department Consultative Committee) for the period prescribed in the curriculum during summer / winter vacation, in lieu of Industrial training.

The Internship is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. An Internship report is required at the end of the semester. The Internship training is evaluated based on oral presentation and the Internship report jointly by external and internal examiners constituted by the Head of the Department.

	COURSE OUTCOMES
	On completion of the course, students will be able to
CO1	Acquire knowledge about the Industry environment.
CO2	Apply the skills to the carriers.
CO3	Develop skills in teamwork.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3	2	2	2	3	2	3	3	3	2	3	2
CO2	3	3	3	3	3	2	2	2	2	2	2	2	3	2	3	3
CO3	3	3	3	3	3	2	2	2	2	2	2	2	2	2	3	2

YEAR		IV	SEMESTER	VII	L	T	P	С
COURS	SE CODE /	191F	HS701 / PROFESSIONAL	ETHICS IN	2	Δ	0	•
COURS	SE TITLE		ENGINEERING		3	0	0	3
			COURSE OBJEC	TIVES				
			an awareness on Engineerin	g Ethics and Human	Values,	to instil	l Moral	and Social
	Values and Loyalt	y and to appred	ciate the rights of others.					
			SYLLAB	US				
UNIT ·	- I		HUMAN VAI	LUES				9
			Vork ethic - Service learning					
			Valuing time – Cooperation –			lf confi	dence – (Character –
	•	to Yoga and me	editation for professional exce		gement.			
UNIT -			ENGINEERING					9
			of moral issues – Types of in					
			and Controversy – Models of	f professional roles –	Theories	about	right act	ion – Self-
mierest –	- Customs and Reli	igion – Uses or						
TINITT	TTT			VDEDIMENTATI	ION			0
UNIT -		ENGI	NEERING AS SOCIAL I			read Out	look on	9
Engineer	ing as Experiment	ENGI ation – Engine	NEERING AS SOCIAL I ers as responsible Experimento	ers – Codes of Ethics -	– A Balan	iced Out	look on	Law.
Engineer UNIT -	ing as Experiment	ENGI ation – Engined	NEERING AS SOCIAL I ers as responsible Experiment FETY, RESPONSIBILIT	ers – Codes of Ethics - TIES AND RIGHTS	– A Balan S			Law. 9
Engineer UNIT - Safety an	ing as Experiment IV d Risk – Assessm	ENGI ation – Enginee SA ent of Safety ar	NEERING AS SOCIAL I ers as responsible Experimento FETY, RESPONSIBILIT nd Risk – Risk Benefit Analys	ers – Codes of Ethics - TES AND RIGHTS is and Reducing Risk	– A Balan S – Respec	t for Au	thority -	Law. 9 Collective
Engineer UNIT - Safety an Bargainin	ing as Experiment IV ad Risk – Assessm ng – Confidentiali	ENGI ation – Engined SA ent of Safety ar ty – Conflicts of	NEERING AS SOCIAL I ers as responsible Experiment FETY, RESPONSIBILIT	ers – Codes of Ethics - TES AND RIGHTS is and Reducing Risk	– A Balan S – Respec	t for Au	thority -	Law. 9 Collective
Engineer UNIT - Safety an Bargainin	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di	ENGI ation – Engined SA ent of Safety ar ty – Conflicts of	NEERING AS SOCIAL I ers as responsible Experimento FETY, RESPONSIBILIT nd Risk – Risk Benefit Analys	ers – Codes of Ethics – TES AND RIGHTS is and Reducing Risk me – Professional Rig	– A Balan S – Respec	t for Au	thority -	Law. 9 Collective
Engineer UNIT - Safety an Bargainin Property UNIT -	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di	ENGI ation – Engine SA ent of Safety ar ty – Conflicts of scrimination	NEERING AS SOCIAL I ers as responsible Experimente FETY, RESPONSIBILIT nd Risk – Risk Benefit Analys of Interest – Occupational Cris	ers – Codes of Ethics - TIES AND RIGHTS his and Reducing Risk me – Professional Rig SUES	– A Balan S – Respec hts – Emp	t for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual
Engineer UNIT - Safety an Bargainin Property UNIT - Multinati	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di V ional Corporations	ENGI ation – Engine SA ent of Safety ar ty – Conflicts of scrimination s – Environme	NEERING AS SOCIAL Is ers as responsible Experimente. IFETY, RESPONSIBILIT and Risk – Risk Benefit Analyst of Interest – Occupational Critical Control of Company of C	ers – Codes of Ethics – TIES AND RIGHTS sis and Reducing Risk me – Professional Rig SUES cs – Weapons Develo	- A Balan S - Respective Employment -	et for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual 9 Managers –
Engineer UNIT - Safety an Bargainin Property UNIT - Multinati	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di V ional Corporations ng Engineers – En	ENGI ation – Engine SA ent of Safety ar ty – Conflicts of scrimination s – Environme	ers as responsible Experimente FETY, RESPONSIBILIT and Risk – Risk Benefit Analys of Interest – Occupational Cris GLOBAL ISS ental Ethics – Computer Ethi bert Witnesses and Advisors –	ers – Codes of Ethics - TIES AND RIGHTS is and Reducing Risk me – Professional Rig SUES cs – Weapons Develo- Moral Leadership –	- A Balan S - Respective Employment -	et for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual 9 Managers –
Engineer UNIT - Safety an Bargainin Property UNIT - Multinati Consultin Responsi	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di V ional Corporations ng Engineers – En ibility	ENGI ation – Engine SA ent of Safety an ty – Conflicts o scrimination s – Environme agineers as Exp	REERING AS SOCIAL Is ers as responsible Experimente. IFETY, RESPONSIBILIT and Risk – Risk Benefit Analyst of Interest – Occupational Crimer GLOBAL ISSENTIAL Ethics – Computer Ethics – Computer Ethics – Course and Advisors – COURSE OUTCO	ers – Codes of Ethics - TIES AND RIGHTS is and Reducing Risk me – Professional Rig SUES cs – Weapons Develo- Moral Leadership –	A Balan Respectively Respectively Respectively Respectively	et for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual 9 Managers –
Engineer UNIT - Safety an Bargainin Property UNIT - Multinati Consultin Responsi	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di V ional Corporations ng Engineers – En ibility	ENGI ation – Engine SA ent of Safety an ty – Conflicts of scrimination s – Environme agineers as Exp	REERING AS SOCIAL Is ers as responsible Experimente. FETY, RESPONSIBILIT and Risk – Risk Benefit Analyst of Interest – Occupational Crist GLOBAL ISSENTIAL Ethics – Computer Ethics ert Witnesses and Advisors – COURSE OUTCO	ers – Codes of Ethics - TES AND RIGHTS is and Reducing Risk me – Professional Rig SUES cs – Weapons Develo- Moral Leadership – OMES	A Balan Respectively Respectively Respectively Respectively	et for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual 9 Managers –
Engineer UNIT - Safety an Bargainin Property UNIT - Multinati Consultin Responsi On comp	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di V ional Corporations ng Engineers – En ibility letion of the cours Create an awarer	ENGI ation – Enginee SA ent of Safety ar ty – Conflicts of scrimination s – Environme agineers as Exp ee, students will aless on Engineer	REERING AS SOCIAL IS ers as responsible Experimente. FETY, RESPONSIBILIT and Risk – Risk Benefit Analyst of Interest – Occupational Crimeral Ethics – Computer Ethics – Computer Ethics ert Witnesses and Advisors – COURSE OUTCO I be able to ering Ethics and Human Value	ers – Codes of Ethics - TES AND RIGHTS is and Reducing Risk me – Professional Rig SUES cs – Weapons Develo- Moral Leadership – OMES	A Balan Respectively Respectively Respectively Respectively	et for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual 9 Managers –
Engineer UNIT - Safety an Bargainin Property UNIT - Multinati Consultin Responsi On comp CO1 CO2	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di V ional Corporations ng Engineers – En ibility Oletion of the cours Create an awarer Instill Moral, Sc	ENGI ation – Enginee SA ent of Safety ar ty – Conflicts of scrimination s – Environme agineers as Exp ee, students will ness on Engineer cial Values and	REERING AS SOCIAL IS ers as responsible Experimente. FETY, RESPONSIBILIT and Risk – Risk Benefit Analyst of Interest – Occupational Crimeral Ethics – Computer Ethics – Computer Ethics ert Witnesses and Advisors – COURSE OUTCO I be able to ering Ethics and Human Value	ers – Codes of Ethics - TES AND RIGHTS is and Reducing Risk me – Professional Rig SUES cs – Weapons Develo- Moral Leadership – OMES	A Balan Respectively Respectively Respectively Respectively	et for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual 9 Managers –
Engineer UNIT - Safety an Bargainin Property UNIT - Multinati Consultin Responsi On comp CO1 CO2 CO3	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di Ional Corporations ng Engineers – En ibility Oletion of the cours Create an awarer Instill Moral, So Apply ethics in s	ENGI ation – Enginee SA ent of Safety at ty – Conflicts of scrimination s – Environme agineers as Exp ee, students will theses on Engineer ocial Values and ociety	REERING AS SOCIAL IS ers as responsible Experimente. FETY, RESPONSIBILIT and Risk – Risk Benefit Analyst of Interest – Occupational Crimeral Ethics – Computer Ethics – Computer Ethics ert Witnesses and Advisors – COURSE OUTCO I be able to ering Ethics and Human Value	ers – Codes of Ethics - TES AND RIGHTS is and Reducing Risk me – Professional Rig SUES cs – Weapons Develo- Moral Leadership – OMES	A Balan Respectively Respectively Respectively Respectively	et for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual 9 Managers –
Engineer UNIT - Safety an Bargainin Property UNIT - Multinati Consultin Responsi On comp CO1 CO2	ing as Experiment IV Id Risk – Assessm ng – Confidentiali Rights (IPR) – Di V ional Corporations ng Engineers – En ibility Oletion of the cours Create an awarer Instill Moral, Sc	ENGI ation – Enginee SA ent of Safety ar ty – Conflicts of scrimination s – Environme agineers as Exp ee, students will ness on Engineer ocial Values and ociety ghts of others	REERING AS SOCIAL IS ers as responsible Experimente. FETY, RESPONSIBILIT and Risk – Risk Benefit Analyst of Interest – Occupational Crimeral Ethics – Computer Ethics ert Witnesses and Advisors – COURSE OUTCO to be able to ering Ethics and Human Valued Loyalty	ers – Codes of Ethics - TES AND RIGHTS is and Reducing Risk me – Professional Rig SUES cs – Weapons Develo- Moral Leadership – OMES	A Balan Respectively Respectively Respectively Respectively	et for Au ployee I	thority – Rights –	Law. 9 - Collective Intellectual 9 Managers –

TEXT BOOKS

- 1. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- 2. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.

- 1. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" McGraw Hill education, India Pvt. Ltd., New Delhi 2013.
- $2.\ World\ Community\ Service\ Centre,\ "\ Value\ Education",\ Vethathiri\ publications,\ Erode, 2011$
- 3. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage learning 2009.
- 4. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 5. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 6. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford 2001

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	-	-	-	-	-	-	-	3	3	3	3	3	3	3	3	1
CO2	-	-	-	-	-	-	-	3	3	2	3	3	3	3	1	1
СОЗ	-	-	-	-	-	-	-	3	3	2	3	3	3	3	1	1
CO4	-	-	-	-	-	-	-	3	3	2	3	3	3	3	1	1
CO5	-	-	-	-	-	-	-	3	3	2	3	3	3	3	1	1

YEAR	IV	SEMESTER	VII	L	T	P	C
COURSE CODE / COURSE TITLE	191EE7	21 / HIGH VOLTAGE ENG	INEERING	3	0	0	3

- ✓ To understand the various types of over voltages in power system and protection methods.
- ✓ Learn the nature of breakdown mechanism in solid, liquid and gaseous dielectrics.
- ✓ Learn the various methods for generating over voltages in laboratories.
- ✓ Learn the various methods form measuring over voltages in laboratories.
- ✓ To know the various testing procedures conducted on power apparatus and insulation coordination.

SYLLABUS

UNIT - I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS 9

9

Causes of over voltages and its effects on power system – Lightning, switching surges and temporary over voltages, Corona and its effects – Reflection and Refraction of Travelling waves- Protection against over voltages.

UNIT - II DIELECTRIC BREAKDOWN

Gases as insulating media, collision process, Ionization process, Townsend's criteria of breakdown in gases, Paschen's law. Liquid as Insulator, pure and commercial liquids, breakdown in pure and commercial liquids. Intrinsic breakdown, electromechanical breakdown, thermal breakdown, breakdown of solid dielectrics in practice, Breakdown in composite dielectrics, solid dielectrics used in practice.

UNIT - III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS

9

Generation of High DC, AC, impulse voltages and currents - Triggering and control of impulse generators.

UNIT - IV MEASUREMENTS OF HIGH VOLTAGES AND CURRENTS

9

Measurement of high direct current voltages, measurement of high alternating and impulse voltages, measurement of high direct, alternating and impulse currents, Cathode Ray Oscillographs for impulse voltage and current measurements.

UNIT - V TESTING OF MATERIALS AND ELECTRICAL APPARATUS

9

Measurement of D.C Resistivity, Measurement of Dielectric Constant and loss factor, Partial discharge measurements. Testing of Insulators and bushings, Testing of Isolators and circuit breakers, testing of cables, Testing of Transformers, Testing of Surge Arresters, Radio Interference measurements.

COURSE OUTCOMES

On completion of the course, students will be able to

- **CO1** Classify the various types of over voltages in power system and protection methods.
- **CO2** Distinguish the nature of Breakdown mechanism in solid, liquid and gaseous dielectrics.
- **CO3** Describe the Generation of over voltages in laboratories
- **CO4** Distinguish the various types of measurement of over voltages.
- **CO5** Discuss on Testing of power apparatus.

TEXT BOOKS

- 1. S.Naidu and V. Kamaraju, High Voltage Engineering, Tata McGraw Hill, Fifth Edition, 2013.
- 2. C.L. Wadhwa, High voltage Engineering, New Age International Publishers, Third Edition, 2010.
- 3. E. Kuffel and W.S. Zaengl, J.Kuffel, High voltage Engineering fundamentals, Newnes Second Edition Elsevier , New Delhi, 2005

- 1. R. S. JHA, "High Voltage Engineering", DHANPAT RAI & SONS 2014.
- 2. Subir Ray, An Introduction to High Voltage Engineering PHI Learning Private Limited, New Delhi, Second Edition, 2013.
- 3. L.L. Alston, High Voltage Technology, Oxford University Press, First Indian Edition, 2011.
- 4. Mazen Abdel -Salam, Hussein Anis, Ahdab A-Morshedy, RoshdayRadwan, High Voltage Engineering -Theory & Practice, Second Edition Marcel Dekker, Inc., 2010.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	-	3	-	-	-	-	3	3	3	2	1
CO2	3	3	2	2	-	-	3	-	-	-	-	3	3	3	2	1
CO3	3	2	1	1	-	-	3	-	-	-	-	3	3	2	1	1
CO4	3	3	2	2	-	-	3	-	-	-	-	3	3	3	2	1
CO5	3	3	2	1	-	-	3	-	-	-	-	3	3	3	1	1

YEAR	IV	SEMESTER	VII	L	T	P	C
COURSE CODE / COURSE TITLE	191EE722	/ PROTECTION AND SW	ITCHGEAR	3	0	0	3

- To give a broad coverage on all types of protective relays.
- To impart the knowledge on fundamental of circuit breakers.
- To provide a strong background for working in a practical power system protection.
- To understand about the electrical apparatus protection
- To analyze the earthing types and its details.

SYLLABUS

UNIT - I **INTRODUCTION**

Principles and need for protective schemes – nature and cause of faults – types of fault – three phase short circuit of an alternator – generator reactance – short circuit capacity– current limiting reactors

UNIT - II PROTECTIVE RELAYS

Definition-Requirement of relays-General classification-Principle of operation-types- characteristics- Torque equation-Relaying Schemes-Relay Co-ordination-IDMT relays- Non-directional and directional over current IDMT relays - Earth fault relays—Introduction to static relays—Microprocessor and computer based protective relaying

APPARATUS AND LINE PROTECTION

Apparatus protection - Line Protection - Distance, Differential protection and Carrier current protection. Generator protection protection against abnormal condition, stator and rotor protection Transformer Protection - Incipient fault-Differential protection, Feeder and Bus bar protection-Microprocessor based protective schemes.

EARTHING AND INSULATION CO-ORDINATION **UNIT - IV**

Solid, resistance and reactance Earthing - Arc suppression coil - Earthing transformers - Introduction to IEC standards for earthing (TT, TN, IT) - Earth wires - Insulation co-ordination: Definition - Determination of line insulation - Insulation levels of sub-station equipment - Co-ordination amongst items of substation equipment - Introduction to Indian Electricity rules.

UNIT - V SURGE AND SURGE PROTECTION

Causes of over voltages - Lightning phenomenon - Traveling waves on transmission lines - Over voltage due to lightning -Protections against lightning – Lightning arresters – Types – Lightning arrester selection – Surge absorbers.

COURSE OUTCOMES

On completion of the course, students will be able to

- CO₁ Understand the types of faults. CO₂ Analyze the concepts of relays and its types. Inspect the protective schemes for power system. CO₃
- CO₄ Outline the concepts of Earthing.
- Summarize the Lightning protection **CO5**

TEXT BOOKS

- 1. Badri Ram and Vishwakarma D N, —Power System Protection and Switchgear Tata McGraw-Hill, New Delhi, 2011.
- 2. Ravindranath B and Chander M, —Power System Protection and Switchgear, New Age International, New Delhi, July 2011

- 1. Soni M L, Gupta P V, Bhatnagar U S and Chakrabarti A, "A Text Book on Power Systems Engineering", DhanpatRai& Co., New Delhi, 2013.
- 2. Sunil S Rao, "Switchgear Protection and Power Systems", Khanna Publishers, New Delhi, 2012.
- 3. Y.G. Paithankar and S.R. Bhide, Fundamentals of Power System Protection, PHI Learning Private Limited, New Delhi, 2010.
- 4. C.L. Wadhwa, 'Electrical Power Systems', Wiley-Blackwell, 6th Edition, 2007.
- 5. Cooper bus man Application note

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	-	-	3	-	-	-	3	3	3	2	1	1
CO2	3	2	1	1	-	-	3	-	-	-	3	3	3	2	1	1
СОЗ	3	2	1	1	•	ı	3	•	-	-	3	3	3	2	1	1
CO4	3	2	1	1	1	ı	3	1	-	•	3	3	3	3	1	1
CO5	3	2	1	1	•	1	3	-	-	-	3	3	3	3	1	1

YEAR		IV	SEMESTER	VII	L	T	P	C
	SE CODE /	191EE72	A / RENEWABLE ENERGY	SYSTEMS	0	0	2	1
COURS	E TITLE		LABORATORY		U	U	4	
			COURSE OBJECTIV	ES				
			Energy Sources and technologies					
			ariety of issues in harnessing Rene					
√	To recognize curre	ent and possible	future role of Renewable energy s					
			LIST OF EXPERIMEN	NTS				
1	Simulation study	on Solar PV En	ergy System.					
2	Experiment on V	I-Characteristics	s and Efficiency of 1kWpSolar PV	V System				
3	Experiment on S	hadowing effect	and diode based solution in1kWp	Solar PV System				
4	Experiment on P	erformance asses	ssment of Grid connected and Sta	ndalone 1kWp Sol	ar Powe	r Systei	n	
5	Simulation study	on Wind Energ	y Generator					
6	Experiment on P	erformance asses	ssment of micro Wind Energy Ge	nerator				
7	Simulation study	on Hybrid (Sola	nr-Wind) Power System					
8	Experiment on P	erformance Asse	essment of Hybrid (Solar-Wind) F	Power System				
9	Simulation study	on Hydel Power	r					
10	Experiment on P	erformance Asse	essment of 100W Fuel Cell					
11	Simulation study	on Intelligent C	ontrollers for Hybrid Systems.					
			COURSE OUTCOMI	ES				
On comp	letion of the cours	se, students will l	be able to					
CO1			l energy, Hybrid system					
CO2	Analyse the perf	formance of rene	wable energy systems					
CO3	Design renewabl	le energy system						

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	-	2	2	-	-	-	2	2	3	2	2	2
CO2	3	2	2	2	1	2	2	-	-	ı	2	2	3	3	2	2
CO3	3	2	2	2	-	2	2	-	-	-	2	2	3	2	2	2

YEAR	IV	SEMESTER	VII	L	T	P	C
COURSE CODE /	101E	EF77A / PROJECT WORK P	насе і	0	Λ	1	•
COURSE TITLE	1916	E//A/FROJECI WORK F	пазе і	U	U	4	2

- To develop their own innovative prototype of ideas.
- ✓ To train the students in preparing project reports and examination.

LIST OF EXPERIMENT

Project work may be allotted to a single student or to a group of students not exceeding 4 per group.

The Head of the Institutions shall constitute a review committee for project work for each branch of study. There shall be three reviews during the semester by the review committee. The student shall make presentation on the progress made by him / her before the committee. The total marks obtained in the three reviews shall be reduced for 30 marks and rounded to the nearest integer.

1

The project report shall carry a maximum 20 marks. The project report shall be submitted as per the approved guidelines as given by the Controller of Examinations. Same mark shall be awarded to every student within the project group for the project report.

The viva-voce examination shall carry 50 marks. Marks are awarded to each student of the project group based on the individual performance in the viva-voce examination.

COURSE OUTCOMES

On completion of the course, students will be able to

CO1

On Completion of the project work phase I students will be in a position to take up their

final year project work phase II.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2

- ✓ To develop their own innovative prototype of ideas.
- ✓ To train the students in preparing project reports and examination.

LIST OF EXPERIMENT

To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.

The Head of the Institutions shall constitute a review committee for project work for each branch of study. There shall be three reviews during the semester by the review committee. The student shall make presentation on the progress made by him / her before the committee. The total marks obtained in the three reviews shall be reduced for 30 marks and rounded to the nearest integer.

The project report shall carry a maximum 20 marks. The project report shall be submitted as per the approved guidelines as given by the Controller of Examinations. Same mark shall be awarded to every student within the project group for the project report.

The viva-voce examination shall carry 50 marks. Marks are awarded to each student of the project group based on the individual performance in the viva-voce examination.

COURSE OUTCOMES

On completion of the course, students will be able to

On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
СОЗ	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

1

CO₁

YEAR	III	SEMESTER	V	L	T	P	C					
COURSE CODE / COURSE TITLE	191HS53	31/ PRINCIPLES OF MANA	AGEMENT	3	0	0	3					
COURSE OBJECTIVES												
✓ To impart the known	✓ To impart the knowledge on the functions and principles of Management											

- ✓ To understand the application of the principles in an organization
- To analyze Managerial functions like planning, organizing, staffing, leading & controlling and have some basic knowledge on international aspect of management

SYLLABUS

UNIT - I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS 9 Definition of Management - Science or Art - Evolution of Management - Scientific, human relations, system and contingency

approaches - Types of managers - Managerial roles and skills - Henry Fayol's 14 Principles - Current trends and issues in Management.

UNIT - II **PLANNING**

Nature and purpose of planning – Planning process – Types of planning – Objectives – Policies – Planning premises – Strategic Planning – Planning Tools and Techniques – Decision making steps and process.

UNIT - III **ORGANIZING**

Nature and purpose - Formal and informal organization - Organizational chart - Organization structure - types - Line and staff authority - Departmentalization - Delegation of authority - Centralization and Decentralization - Job Design

UNIT - IV DIRECTING

Individual and group behaviour - Motivation - Motivation theories - Motivational techniques - Job satisfaction - Job enrichment - Leadership - Types and theories of leadership - Communication - Process of communication - Barriers in communication -Communication and IT.

CONTROLLING UNIT - V

Process of controlling – Budgetary and non-budgetary control techniques – Role of computers and IT in controlling process – Productivity management - Cost Control - Purchase Control - Maintenance Control - Quality Control - Planning operations reporting.

COURSE OUTCOMES

On completion of the course, students will be able to

- **CO1** Summarize the evolution of management thoughts and various challenges of managerial activities in a global.
- CO₂ Explain the types of Planning and Decision making at various levels management in the Organizations. CO₃ Discuss various types of Organization structure.
- CO₄ Explain the elements in Direction.
- **CO5** Generalize various Controlling techniques to maintain standards in Organizations.

TEXT BOOKS

- 1. Stephen P. Robbins & Mary Coulter "Management", Prentice Hall (India) Pvt. Ltd., 10th Edition, 2009
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 6th Edition, 2004.

- 1. Stephen A. Robbins & David A. Decenzo& Mary Coulter "Fundamentals of Management", Pearson Education, 7th Edition, 2011.
- 2. Robert Kreitner&MamataMohapatra "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of Management" Tata McGraw Hill, 1998.
- 4. Tripathy PC & Reddy PN— "Principles of Management", Tata McGraw Hill, 1999.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	-	-	-	-	3	3	3	3	2	2	2	-	-	-	-
CO2	3	-	-	-	-	3	3	3	3	2	2	2		-	-	-
СОЗ	3	-	-	-	-	3	3	3	3	2	2	2		-	-	-
CO4	3	-	-	-	-	3	3	3	3	2	2	2		-	-	-
CO5	3	-	-	-	-	3	3	3	3	2	2	2	-	-	-	-

YEAR	III	SEMESTER	V	L	T	P	C
COURSE CODE /	191EE5	34 / THEORIES OF POWE	R PLANT	3	0	0	3
COURSE TITLE	1711110	er mediaes of fowe			U	U	

- ✓ Understand the Basics of power plants & types of power plant with the various handling techniques involved for the entire operation.
- ✓ Understand the working of thermal power plants with the various handling techniques involved for the entire operation.
- ✓ Analyze the working of Hydro, Diesel power plant and its applications.
- ✓ Analyze the various type gas power plant and basics of the Nuclear Engineering with different types of reactors used in line with the safety measures.
- ✓ Validate the environmental impact and power plant safety of various power plants.

SYLLABUS

UNIT - I INTRODUCTION TO POWER PLANT 9

Introduction to power plant- Indian Energy scenario- Location of power plant- Choice of Power plant- Classification of power plant- Terminology used in power plant: Peak load, Base load, Load factor, Load curve- Various factor affecting the operation of power plant - Performance and operating characteristics of power plant.

UNIT – II THERMAL POWER PLANT 9

Role of thermal power plant in current power generation scenario- Selection site for thermal power plant- General lay out of a thermal power plant- Fuels used in thermal power plant- Fuel handling layout and its methods, stages in coal handling storage-Fuel Burning-Stoker firing, Pulverized fuel burning- Pulverization of coal- Ash handling system- Gravity system, pneumatic or vacuum system, electrostatic precipitation (ESP) system- Ash disposal Management and its utilization.

UNIT - III HYDRO AND DIESEL POWER PLANT 9

Introduction to Hydroelectric power plant- Selection of sites for hydro electric power plant- General layout of Hydro electric power plant and its working- Classification of hydro plant- Advantages and disadvantages of hydro electric power plant- The layout of diesel power plant- Components and the working of diesel power plant- Advantages and disadvantages of diesel power plant.

UNIT - IV GAS TURBINE PLANT AND NUCLEAR POWER PLANTS 9

Gas turbine power plant-Schematic diagram, components and its working- Combined cycle power generation- Combined gas and steam turbine power plant operation- Introduction to Nuclear power- Working of a nuclear power plant- Thermal fission Reactors- PWR, BWR and gas cooled reactors- Advantages and Disadvantages of Nuclear power plant.

UNIT - V ENVIRONMENTAL IMPACT AND POWER PLANT SAFETY 9

Social and Economical issues of power plant - Greenhouse effect - Air, water, Thermal pollution from power plants - Radiations from nuclear power plant effluents -Plant safety concept- Safety policy to be observed in power plants- Safety practices to be observed in boiler operation

COURSE OUTCOMES

On completion of the course, students will be able to

- **CO1** Infer the importance and basic knowledge of various power plant.
- **CO2** Demonstrate the knowledge on the concepts of thermal power plant and their applications.
- CO3 Summarize the different concepts of hydro and diesel power plant with the protection and various system for an application.
- **CO4** Suggest and apply various application and concepts gas turbine plant and nuclear power plants
- CO5 Infer the different aspects on environmental impact and power plant safety with social and economical issues of power plant.

TEXT BOOKS

- 1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 2. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw Hill Publishing Company Ltd., 2008.

- 1. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 2. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw Hill, 1998.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	-	-	-	-	3	3	3	3	2	2	2	-	-	-	-
CO2	3	-	-	-	-	3	3	3	3	2	2	2	-	-	-	-
СОЗ	3	-	-	-	-	3	3	3	3	2	2	2		-	-	-
CO4	3	-	-	-	-	3	3	3	3	2	2	2		-	-	-
CO5	3	-	-	-	-	3	3	3	3	2	2	2	-	-	-	-

		T						
	YEAR	III	SEMESTER	VI	L	T	P	C
	SE CODE /		191EE633 / HUMAN RIGHT		3	0	0	3
COUR	SE TITLE	AND D	UTIES: CONCEPTUAL PERS					
			COURSE OBJECTIVE					
√			dents to various aspects of Human R	ights.				
√			of Human Rights and UN Laws					
✓	To familiarize abo	ut Human Rig						
	_		SYLLABUS					_
UNIT			FOUNDATIONS OF HUMA					9
		ept of Human	Rights – Classification of Rights – I		d Legal l	Rights		1
UNIT			DEVELOPMENT OF HUMA					9
			gin of United Nations Organization					National
			Rights Commission, National Com				nildren	
UNIT -			HTS AND DUTIES UNDER I					9
		eamble, Funda	amental Duties; Directive Principl	es of State Policy	y, Emer	gency P	rovision	s in Indian
Constitu								_
UNIT -			ERSPECTIVES OF RIGHTS					9
	Inherent-Inalienabl	le-Universal- 1	Individual and Groups, Nature and	concept of Dutie	es, Inte	relation	ship of	Rights and
Duties								1
UNIT			AN RIGHTS OF DISADVAN					9
			- Women, Children, Displaced pers					
			an Rights – National and State Hum	an Rights Commi	ission –	Judiciar	y – Role	of NGO's,
Media, I	Educational Institut	ions, Social M		7G				
0	1		COURSE OUTCOME	28				
On com	pletion of the cours		nciples and institutions of internations		aleka las		مائیہ مے خاب	ain aniaina
CO ₁	assumptions, con		*	ational numan n	gins rav	v, iliciu	ang m	eir origins,
			tand the importance of the fundar	pental principle i	ts conce	nt Con	corn and	1 Source of
CO ₂			uman Rights. As well as Capacity t					
CO2			onal norms and standards for human			ipij wie	i oonga	tions under
G04			nalytically about the implementation			rnationa	ıl humar	rights law
CO ₃			your own professional and national					6
CO4			junction with human rights specialis		olars in e	xpandin	g knowl	edge about
CO4			ing respect for the values they embo			1	C	C
CO5	An improved abi	lity to conduct	research on international human rig	thts law and Dutie	es.			
	•		TEXT BOOKS					
1. Chan	dra U., "Human Ris	ghts", Allahaba	ad Law Agency, Allahabad, 2014					
			man Rights Development of under F	rivilege, New De	lhi: Saru	p, 2002		
3. P.L. N	Mehata, NeenaVern	na - Human Ri	ghts Under The Indian Constitution					
			REFERENCES					
1. James	s Griffin." On Hum	an Rights". OI	JP UK Publishers, 2009					

- 1. James Griffin," On Human Rights", OUP UK Publishers, 2009 2. Kaushuk Vijay, Women Movement and Human Rights Jaipur Pomta Publications 1999

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	-	ı	-	ı	ı	1	3	2	2	1	2	2	2	2	1	1
CO2	-	-	-	-	-	-	3	3	3	3	3	3	3	3	1	1
CO3	1	i	-	i	1	ı	3	3	3	3	3	3	3	3	1	1
CO4	ı	İ	-	İ	ı	I	3	2	2	1	2	2	2	2	1	1
CO5	-	-	-	-	-	-	3	3	3	3	3	3	3	3	2	1

YEAR	III	SEMESTER	VI	L	T	P	C
COURSE CODE /	191EE634 /	MICROCONTROLLER BA	SED SYSTEM	3	0	0	3
COURSE TITLE		DESIGN		3	U	U	3
		COURSE OBJECTIV	ES				
To impart knowledge abo ✓ Architecture of F							
✓ Architecture of F		ei					
		inication and transfer					
✓ Functional block	s of ARM proces						
✓ Architecture of A	ARM processors						
		SYLLABUS					
UNIT - I		DUCTION TO PIC MICR			1/		9
		16C6x and PIC16C7x Architect ddressing modes – Simple Operat		'rogram	Memo	ry consi	derations –
UNIT - II	iistruction Set 71	INTERRUPTS AND T					9
	errupts- External	Interrupts-Interrupt Programming		rogramr	ning- F	ront par	-
		pisplay of Constant and Variability		Ü	C	•	
UNIT - III	P	ERIPHERALS AND INTI	ERFACING				9
		Operation-Bus subroutines- Seri	al EEPROM— An	alog to	Digital (Converte	er-UART-
Data handling circuit–Init	ialization - LCD	and keyboard Interfacing					
UNIT - IV	I	NTRODUCTION TO ARM I	PROCESSOR				9
		el –ARM Development tools-		ny – A	RM A	ssembly	Language
	amples-Architect	ural Support for Operating system					
UNIT - V		ARM ORGANIZAT					9
		RM Instruction Execution- AR				uction	Set– ARM
coprocessor interface— Ar	cintectural suppor	rt for High Level Languages – En COURSE OUTCOM		ncation	S.		
On completion of the cou	rse, students will		L S				
CO1 Understand the	concepts of Arch	itecture of PIC microcontroller					
CO2 Acquire knowle	edge on Interrupts	and timers					
CO3 Understand the	importance of Pe	ripheral devices for data commun	ication				
CO4 Understand the	basics of sensor i	nterfacing					
CO5 Acquire knowle	edge in Architectu	ire of ARM processors					
1.0.016 1 (2.2)	. 11 5	TEXT BOOKS		1.00.1	. 201	<u> </u>	
		System Design" Scitech Publication,3rd		d (3 Au	gust 201	.5)	
		tecture" Addison Wesley trade Co		n, 2007			
, , ===	1 2333	REFERENCES	1	,			
1 Charles Grag Osborn "	Embedded Micro	controllers and Processor Design	"Pearson Education	ı (1 Jan	uary 201	1)	

- 2. Designing Embedded Systems With Pic® Microcontrollers: Principles And Applications, 2Nd Edition by Wilmshurst, January
- Mazidi, M.A., "PIC Microcontroller" Rollin Mckinlay, Danny causey ,Prentice Hall of India, 2007
 Muhammed Ali Mazidi, Janice Gillies Pie Mazidi, "The 8051 Microcontroller and Embedded Systems" Pearson EducationAsia. 2004

YEAR	III	SEMESTER	VI	L	T	P	C
COURSE CODE COURSE TITLE	1014463	6 / SPECIAL ELECTRICAL		3	0	0	3
		COURSE OBJECTIV					
		ple and construction of stepper m					
	• •	controllers on Switched reluctan					
		tion and characteristics of synchro			_		
_		is and principle of operation of pe	•	rushless	dc moto	rs	
✓ Analysis E	MF and Volt-Ampere	equation of permanent magnet sy	nchronous motors.				
UNIT - I		SYLLABUS STEPPER MOT	ORS				9
Constructional feat	ures – Principle of ope	eration – Variable reluctance mo	or –Characteristics	s – Driv	e circuit	s – Micı	roprocesso
		oop control – Applications.					•
UNIT - II	• •	SWITCHED RELUCTAN	ICE MOTORS				9
	ures – Principle of o	peration – Torque prediction –		– Micro	nrocess	or based	
Characteristics - Ap	-	peration Torque prediction	Tower controllers	TVITCI	эргоссаа	or busec	Control
UNIT - III		SYNCHRONOUS RELUCT	ANCE MOTOR	S			9
Constructional feat	ures– Types-Axial and	Radial air gap motors— Operatin	g principles – Volt	age and	Torque	Equation	ns – Moto
	• •	ics- Speed -torque characteristics		_	-	-1	
UNIT - IV		MANENT MAGNET BRUSH					9
		and electronic commutator - Pri			se Hal	1 Sansor	
		EMF and torque equation – Mo		• •			-
Applications.	c circuit analysis – I	and torque equation – Mo	tor characteristics	- Mici	process	oi based	Control -
UNIT - V	DED	MANENT MAGNET SYNCI	TONOLIS MO	TODS			9
		equations – Phasor diagram – Po			2000 000	uiramant	
	-		ower controllers -	v on-any	pere requ	unemem	s – Torque
speed characteristic	s - Microprocessor bas	ed control – Applications.	TEC				
	. 1	COURSE OUTCOM	ES				
•	ne course, students will				0		
CO1	iate the types of steppe	er motor, compare the construction	n, Associate the pri	nciple o	f operati	on, perf	ormance of
stepping	motor						
CO2 Compare	the construction; Asso	ociate the principle of operation &	performance of SR	M.			
Distingui	sh the types of sync	hronous reluctance motor. Com	pare the principle	of one	ration a	nd perfo	rmance o
CO3		monous resuctance motors com-	pare the principle	or ope		no pono	
synchron	ous reluctance motor						
CO4 Distingui	sh the construction, pr	inciple of operation, performance	of BLDC motor				
CO5 Distingui	sh the construction, pr	inciple of operation, performance	of PMSM				
		TEXT BOOKS					
1. Gopal K.Dubey,"	Fundamentals of Elect	crical Drives", Narosa Publishing	House Pvt. Ltd.,Ne	w Delhi	, Second	edition,	2015.

2. Bimal K.Bose, "Modern Power Electronics and AC Drives", Prentice Hall, New Delhi, 2005.

REFERENCES

- 1. Janardanan E.G., "Special Electrical Machines", PHI Learning Private Limited, 2015.
- 2. Krishnan R., "Permanent Magnet Synchronous and Brushless DC Motor Drives", CRC Press, New York, 2010.
- 3. Krishnan R., "Switched Reluctance Motor Drives Modeling, Simulation, Analysis, Design and Application", CRC Press, New York, 2009
- 4. K. Venkataratnam, "Special Electrical Machines", University Press (India) Pvt.

Ltd., 2009.

5. Theodore wildi., "Electrical machines Drives and Power systems", 6th edition, Pearson Education india Pvt ltd, 2006.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	1	-	-	2	-	1	1	1	1	2	2	2	1
CO2	3	2	2	1	-	-	2	-	1	1	1	1	2	2	2	1
CO3	3	2	2	1	-	-	2	-	1	1	2	2	2	2	2	1
CO4	3	2	2	1	•	-	2	-	-	1	2	2	2	2	2	1
CO5	3	2	2	1	-	-	2	-	-	1	2	2	2	2	2	1

YEAR	IV	SEMESTER	VII	L	T	P	C						
COURSE CODE /													
COURSE TITLE RENEWABLE ENERGY SYSTEMS 3 0 0 3													
COURSE OBJECTIVES													
		and alone and grid connected ren											
		rive the criteria for the design of		or renew	vable en	ergy app	lications.						
		rious operating modes of solar er											
✓ To design and comprehend the various operating modes of wind electrical generators.													
✓ To develop maximum power point tracking algorithms.													
SYLLABUS													

UNIT - I INTRODUCTION 9

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources ocean, Biomass, Hydrogen energy systems : operating

Review of reference theory fundamentals-principle of operation and analysis. 10, PMSO, SCIO and DPIO.

UNIT - III POWER ELECTRONICS IN SOLAR PV SYSTEMS

Photo Voltaio(DV), cell module, array and nonel Homo solar DV system. Common enter of a homo solar system. To

Photo Voltaic(PV): cell, module, array and panel, Home solar PV system, Components of a home solar system, Types of batteries used in solar PV system, Charge Controller, Signal Conditioner Inverter Power Electronic Devices Used In a solar PV system, Power configuration for grid-connected PV systems: central, string and module inverters configuration.

9

UNIT - IV POWER ELECTRONICS IN WIND POWER PLANTS 9

Wind energy basics: wind requirement and in windy site, Aerodynamics of Wind power Plants: stall, active stall and pitch control, Direct, Geared and Semi Geared wind power plants, Stand alone operation of fixed and variable speed wind energy conversion systems - Power electronic circuits: Soft starters, Back-to-back converters, Multi-level converters

UNIT - V HYBRID RENEWABLE ENERGY SYSTEMS 9 Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking

Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

COURSE OUTCOMES On completion of the course, students will be able to CO1 Understand the concepts of environmental impacts of renewable energy generation. CO2 Analyze the different types electrical machines used in renewable energy conversion CO3 Inspect the usage of power electronics in solar PV systems. CO4 Inspect the usage of power electronics in Wind power plants. CO5 Analyze the hybrid power generation

TEXT BOOKS

- 1. Renewable Energy, Power for a sustainable future, Godfrey Boyle, 3rdEdn., Oxford University Press, 2012
- 2. S.N.Bhadra, D. Kastha, & S. Banerjee "Wind Electricaal Systems", Oxford University Press, 2009
- 3. Rashid .M. H "power electronics Hand book", Academic press, 2001
- 4. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993

- 1. Rai, G.D., Solar Energy Utilization, Khanna Publishers, N. Delhi, 2010.
- 2. Non-conventional Energy sources B.H.Khan Tata McGraw-hill Publishing Company, New Delhi. 2009
- 3. Gray, L. Johnson, "Wind energy system", prentice hall line, 1995.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	-	3	3	-	3	-	3	3	3	3	2	1
CO2	3	3	2	2	-	3	3	-	2	-	3	3	3	3	2	1
CO3	3	2	1	1	-	3	3	-	3	-	3	3	3	3	1	1
CO4	3	2	1	1	-	3	3	-	3	-	3	3	3	3	1	1
CO5	3	3	2	2	-	3	3	-	3	-	3	3	3	3	2	1

YEAR		IV	SEMESTER	VIII	L	T	P	С					
	E CODE / E TITLE	191EE83	34 / INTELLECTUAL PRO	OPERTY RIGHTS	3	0	0	3					
			COURSE OBJE	CCTIVES									
√]	Го give an idea ab	out Intellectual	Property Rights										
✓]	Γο impart the kno	wledge on regis	stration of IPRs and its enfor	rcement									
✓]	Γo understand abo	out the Digital p	products and law										
			SYLLA	BUS									
UNIT - I INTRODUCTION													
Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights, Geographical Indications													
India and Abroad – Genesis and Development – the way from WTO to WIPO –TRIPS, Nature of Intellectual Property, Ir													
Property, technological Research, Inventions and Innovations – Important examples of IPR													
UNIT - II REGISTRATION OF IPRs													
								9					
Meaning	and practical aspe		tion of Copy Rights, Trader		hical Ind	ications,	Trade	_					
Meaning a Industrial	and practical aspe Design registration		tion of Copy Rights, Trader Abroad	marks, Patents, Geograph	hical Ind	ications,	Trade	Secrets and					
Meaning a Industrial UNIT - 1	and practical aspe Design registration	on in India and	tion of Copy Rights, Trader Abroad AGREEMENTS ANI	marks, Patents, Geograph D LEGISLATIONS				Secrets and					
Meaning and Industrial UNIT - I Internation	and practical aspe Design registration III and Treaties and C	on in India and Conventions on	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P	marks, Patents, Geograph D LEGISLATIONS				Secrets and					
Meaning and Industrial UNIT - I Internation Design Additional	and practical aspe Design registration III nal Treaties and C ct, Trademark Act	on in India and Conventions on	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P Indication Act	marks, Patents, Geograph D LEGISLATIONS PCT Agreement, Patent A				Secrets and 9 dment Act					
Meaning a Industrial UNIT - I Internation Design Acturn 1 UNIT - I	and practical aspe Design registration III nal Treaties and C ct, Trademark Act	on in India and Conventions on t, Geographical	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P Indication Act DIGITAL PRODU	D LEGISLATIONS PCT Agreement, Patent A	act of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act					
Meaning a Industrial UNIT - Internatio Design Ac UNIT - I Digital In	and practical aspe Design registration III nal Treaties and Cott, Trademark Active IV movations and Design	Conventions on t, Geographical	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P Indication Act DIGITAL PRODU S Knowledge Assets – IP 1	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and I	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act					
Meaning a Industrial UNIT - I Internation Design Ad UNIT - I Digital In Competiti	and practical aspe Design registration III nal Treaties and Coct, Trademark Act IV novations and Do ion – Meaning and	Conventions on t, Geographical	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P Indication Act DIGITAL PRODU S Knowledge Assets – IP I between Unfair Competition	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and In and IP Laws – Case Stu	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act 9 on – Unfai					
Meaning Industrial UNIT - I Internatio Design Ad UNIT - I Digital In Competiti UNIT -	and practical aspe Design registration III nal Treaties and Cot, Trademark Act IV novations and Doton – Meaning and V	Conventions on t, Geographical evelopments as d Relationship	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P Indication Act DIGITAL PRODU S Knowledge Assets – IP I between Unfair Competition ENFORCEME	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and In and IP Laws – Case Stu	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act					
Meaning and Industrial UNIT - Internation Design Ad UNIT - Industrial In Competiti UNIT -	and practical aspe Design registration III nal Treaties and Cot, Trademark Act IV novations and Doton – Meaning and V	Conventions on t, Geographical evelopments as d Relationship	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P Indication Act DIGITAL PRODU S Knowledge Assets – IP I between Unfair Competition ENFORCEME easures, Emerging issues	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and In and IP Laws – Case Stu ENT OF IPRS – Case Studies.	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act 9 on – Unfai					
Meaning a Industrial UNIT - I Internatio Design Ad UNIT - I Digital In Competiti UNIT - Infringen	and practical aspe Design registration III nal Treaties and Cot, Trademark Act IV novations and Doton – Meaning and V	Conventions on t, Geographical evelopments as d Relationship	Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P Indication Act DIGITAL PRODU S Knowledge Assets – IP I between Unfair Competition ENFORCEME easures, Emerging issues COURSE OUT	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and In and IP Laws – Case Stu ENT OF IPRS – Case Studies.	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act 9 on – Unfai					
Meaning Industrial UNIT - I Internatio Design Ad UNIT - I Digital In Competiti UNIT - Infringen	and practical aspe Design registration III nal Treaties and Coct, Trademark Act IV novations and Do ton – Meaning and V ment of IPRs, Er tetion of the cours	Conventions on t, Geographical evelopments as d Relationship inforcement Mee, students will	Abroad AGREEMENTS ANI IPRs, TRIPS Agreement, P Indication Act DIGITAL PRODU S Knowledge Assets – IP I between Unfair Competition ENFORCEME easures, Emerging issues COURSE OUT	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and In and IP Laws – Case Stu ENT OF IPRS – Case Studies.	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act 9 on – Unfai					
Meaning Industrial UNIT - I Internatio Design Ac UNIT - I Digital In Competiti UNIT - Infringen	and practical aspe Design registration III nal Treaties and Coct, Trademark Act IV novations and Doon – Meaning and V nent of IPRs, Er etion of the cours Understand the b	Conventions on t, Geographical evelopments as d Relationship inforcement Mee, students will assics of Intellection	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRS, TRIPS Agreement, P Indication Act DIGITAL PRODU S Knowledge Assets – IP I between Unfair Competition ENFORCEME easures, Emerging issues COURSE OUT	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and In and IP Laws – Case Stu ENT OF IPRS – Case Studies.	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act 9 on – Unfai					
Meaning Industrial UNIT - Internatio Design Ac UNIT - I Digital In Competiti UNIT - Infringen On compl	and practical aspe Design registration III nal Treaties and Coct, Trademark Act IV novations and Doon – Meaning and V nent of IPRs, Er etion of the cours Understand the b	Conventions on t, Geographical evelopments as d Relationship inforcement Mee, students will assics of Intellect registration of	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRS, TRIPS Agreement, Plandication Act DIGITAL PRODUTES Knowledge Assets — IP Indicated to Light Competition ENFORCEME easures, Emerging issues COURSE OUT I be able to ctual Property Rights IPRs in India and Abroad	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and In and IP Laws – Case Stu ENT OF IPRS – Case Studies.	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act 9 on – Unfai					
Meaning Industrial UNIT - I Internation Design Ac UNIT - I Digital In Competiti UNIT - Infringen On compl CO1 CO2	and practical asperation Design registration III nal Treaties and Cot, Trademark Act IV novations and Dono – Meaning and V nent of IPRs, Erretion of the cours Understand the b Demonstrate the	con in India and Conventions on the Conventions on the Conventions on the Conventions of the Conventions of the Conventions of the Convention of the Convent	tion of Copy Rights, Trader Abroad AGREEMENTS ANI IPRS, TRIPS Agreement, Plandication Act DIGITAL PRODUTES Knowledge Assets — IP Indicated to Light Competition ENFORCEME easures, Emerging issues COURSE OUT I be able to ctual Property Rights IPRs in India and Abroad	D LEGISLATIONS PCT Agreement, Patent A JCTS AND LAW Laws, Cyber Law and In and IP Laws – Case Stu ENT OF IPRS – Case Studies.	ct of Inc	ia, Pater	nt Amen	Secrets and 9 dment Act 9 on – Unfai					

TEXT BOOKS

- 1. V. Scople Vinod, Managing Intellectual Property, Prentice Hall of India pvt Ltd, 2012
- 2. S. V. Satakar, "Intellectual Property Rights and Copy Rights, Ess Publications, New Delhi, 2002

- 1. Derek Bosworth and Elizabeth Webster, "The Management of Intellectual Property", Edward Elgar Publishing Ltd., 2013.
- 2. Deborah E. Bouchoux, "Intellectual Property: The Law of Trademarks, Copyrights, Patents and Trade Secrets", Cengage Learning, Third Edition, 2012.
- 3. Prabuddha Ganguli," Intellectual Property Rights: Unleashing the Knowledge Economy", McGraw Hill Education, 2011

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	-	-	-	-	-	-	2	2	2	1	2	2	2	2	1	1
CO2	ı	-	ı	-	ı	-	3	3	3	3	3	3	3	3	1	1
CO3	-	-	1	-	1	-	3	3	3	3	3	3	3	3	1	1
CO4	-	-	1	-	1	-	3	2	2	1	2	2	2	2	1	1
CO5	-	-	-	-	-	-	3	3	3	3	3	3	3	3	2	1

YEAR	IV	SEMESTER	VIII	L	T	P	C					
COURSE CODE / COURSE TITLE	19	91EE837 / REAL TIME SYS	ГЕМЅ	3	0	0	3					
		COURSE OBJECTIV	VES	1								
		ious Real Time systems Application										
	understanding o	f the technologies and application	ns for the emergin	g and ex	citing o	domain o	of real-time					
systems												
✓ Get in-depth han	ds-on experience	e in designing and developing a re	al operational syste	em.								
		SYLLABUS					9					
UNIT - I REAL TIME SYSTEMS Structure of a Real Time System — Estimating program run times — Task Assignment and Scheduling — Fault To												
			rask Assignment	and Sch	eaunng	– Faui	i Toterance					
Techniques – Reliability, Evaluation – Clock Synchronization. INIT - II RASICS OF DEAL-TIME CONCEPTS												
UNIT - II BASICS OF REAL-TIME CONCEPTS Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware Considerations: logic sta												
		ng blocks, Real-Time Kernel	ampies, Haraware	Conside	autions.	logic s	tutes, er e					
UNIT - III	,	INTER-PROCESS COMN	IUNICATION				9					
Massages Ruffers mailbo												
Messages, Duners, mano	oxes, queues, se	emaphores, deadlock, priority inve		MORY I	MANA	GEMEN	_					
stack management, run-tii		emaphores, deadlock, priority investigations, overlays, block/page m	ersion, PIPES ME				T:- Proces					
stack management, run-tincollection.		swapping, overlays, block/page m	ersion, PIPES ME anagement, replace				T:- Proces me garbag					
stack management, run-tincollection. UNIT - IV	me buffer size, s	swapping, overlays, block/page m REAL TIME DATA	ersion, PIPES ME anagement, replace	ement alg	gorithms	s, real-ti	T:- Proces me garbag					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin	me buffer size, s	REAL TIME DATA purpose databases, Main Memory	ersion, PIPES ME anagement, replace ABASES Databases, Transa	ement alg	gorithms	s, real-ti Transact	T:- Proces me garbag 9 ion Aborts					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss	me buffer size, s me Vs General p ues, Disk Sch	REAL TIME DATA ourpose databases, Main Memory leduling Algorithms, Two-phase	ersion, PIPES ME anagement, replace ABASES Databases, Transa	ement alg	gorithms	s, real-ti Transact	T:- Proces me garbag 9 ion Aborts					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency,	ne Vs General pues, Disk Sch Databases for I	REAL TIME DATA ourpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System.	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in	ement alg	gorithms	s, real-ti Transact	T:- Proces me garbage 9 ion Aborts Maintainin					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V	ne Vs General pues, Disk Sch Databases for H REA	REAL TIME DATA ourpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND	ABASES Databases, Transa Approach to in	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbage 9 ion Aborts					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V	ne Vs General pues, Disk Sch Databases for H REA	REAL TIME DATA ourpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND deling, Air traffic controller system	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in CASE STUDIE n – Distributed air	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbage 9 ion Aborts Maintainin					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V Petrinets and applications	ne Vs General pues, Disk Sch Databases for I REA	REAL TIME DATA ourpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND deling, Air traffic controller syster COURSE OUTCOM	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in CASE STUDIE n – Distributed air	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbag 9 ion Aborts Maintainin					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V Petrinets and applications On completion of the cour	me buffer size, some Vs General pues, Disk Sch Databases for FREA in real-time moorese, students wil	REAL TIME DATA Durpose databases, Main Memory deduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND deling, Air traffic controller system COURSE OUTCOM I be able to	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in CASE STUDIE n – Distributed air	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbage 9 ion Aborts Maintainin					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V Petrinets and applications On completion of the cour CO1 Outline the con-	me buffer size, some Vs General pues, Disk Sch Databases for HREA in real-time modesse, students will cepts of embedd	REAL TIME DATA ourpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND deling, Air traffic controller system COURSE OUTCOM I be able to led systems	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in CASE STUDIE n – Distributed air	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbag 9 ion Aborts Maintainin					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V Petrinets and applications On completion of the countrol CO1 Outline the control CO2 Acquire the bas	me buffer size, some Vs General pues, Disk Sch Databases for FREA in real-time moduse, students will cepts of embeddic concepts of real-time modules.	REAL TIME DATA Durpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND deling, Air traffic controller system COURSE OUTCOM I be able to led systems eal time operating system design	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in CASE STUDIE n – Distributed air	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbag 9 ion Aborts Maintainin					
stack management, run-tircollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V Petrinets and applications On completion of the cour CO1 Outline the concurrency CO2 Acquire the bas CO3 Understand the	me buffer size, some Vs General pues, Disk Sch Databases for HREA in real-time more rese, students will cepts of embeddic concepts of reconcept of inter	REAL TIME DATA Durpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND deling, Air traffic controller syster COURSE OUTCOM I be able to led systems eal time operating system design -process communication	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in CASE STUDIE n – Distributed air	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbag 9 ion Aborts Maintainin					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V Petrinets and applications On completion of the countrol CO1 Outline the conductor CO2 Acquire the base CO3 Understand the CO4 Analyze the dat	me buffer size, some Vs General pues, Disk Sch Databases for FREA in real-time more see, students will cepts of embeddic concepts of reconcept of interabase for hard real-time more seed to concept of the concept of t	REAL TIME DATA purpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND deling, Air traffic controller system COURSE OUTCOM I be able to led systems eal time operating system design r-process communication eal time system	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in CASE STUDIE n – Distributed air	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbag 9 ion Aborts Maintainin					
stack management, run-tincollection. UNIT - IV Basic Definition, Real tin Concurrency control iss Serialization Consistency, UNIT - V Petrinets and applications On completion of the countrol CO1 Outline the concurrency CO2 Acquire the bas CO3 Understand the CO4 Analyze the dat	me buffer size, some Vs General pues, Disk Sch Databases for FREA in real-time more see, students will cepts of embeddic concepts of reconcept of interabase for hard real-time more seed to concept of the concept of t	REAL TIME DATA Durpose databases, Main Memory eduling Algorithms, Two-phase Hard Real Time System. AL TIME MODELING AND deling, Air traffic controller syster COURSE OUTCOM I be able to led systems eal time operating system design -process communication	ersion, PIPES ME anagement, replace ABASES Databases, Transa Approach to in CASE STUDIE n – Distributed air	ction pri-	orithms	s, real-ti Transact	T:- Proces me garbag 9 ion Aborts Maintainir					

- Real-Time Computer Control, by Stuart Bennet, 2nd Edn. Pearson Education.
 Real Time Concepts for Embedded Systems Qing Li, Elsevier, 2011
 C.M. Krishna, Kang G. Shin, "Real Time Systems", Tata McGraw Hil, 1997.

- C.M. Krishna, Kang G. Shin, "Real Time Systems", Tata McGraw Hil, 2010.
 Giorgio C. Buttazzo, "Hard real-time computing systems: predictable scheduling algorithms and applications", Springer, 2008.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	1	1	1	ı	-	-	-	-	1	2	2	3	2	1	1
CO2	3	3	2	2	-	-	-	-	-	3	3	3	3	3	2	1
CO3	2	1	1	1	-	-	-	-	-	2	3	3	3	2	1	1
CO4	3	3	2	1	ı	ı	1	-	ı	3	3	3	3	3	2	1
CO5	3	2	1	1	ı	ı	ı	-	ı	2	3	3	3	3	2	1

YEAR IV SEMESTER VIII L T P C	YEAR	IV	SEMESTER	VIII	L	T	P	C
-------------------------------	------	----	----------	------	---	---	---	---

COURSE CODE / 191ES8310 / EMBEDDED CONTROL OF ELECTRIC 3 0 0 3 **COURSE TITLE DRIVES**

COURSE OBJECTIVES

- To study about Embedded control microprocessor control drives
- ✓ Series and parallel functions of SCRs, Programmable triggering methods of SCR
- ✓ To learn about the mc68hc11 microcontroller
- ✓ To study of converters and inverters
- ✓ To learn about micro control application and motor control

SYLLABUS

9 UNIT - I INTRODUCTION

Embedded systems and their characteristics, review of micro - processors, MPU design options, Instruction sets - CISC and RISC – instruction pipelining, the microcontroller – its applications and environment. 16 bit microcontroller – Intel 8096 CPU structure, register file.

UNIT - II AC AND DC ELECTRIC DRIVES 9

Introduction - classification of electric drives - dynamic conditions of a drive system - stability considerations of electrical drives – dc choppers, inverters, cyclo converter, ac voltage controllers, stepper motor.

UNIT - III MC68HC11 MICROCONTROLLER 9

Architecture memory organization - addressing modes - instruction set - programming techniques - simple programs. I/O ports handshaking techniques - reset and interrupts - serial communication interface - serial peripheral interface - programmable timer - analog / digital interfacing - cache memory, Timers - interrupts I/O ports - I2C bus for peripheral chip access - A/D converter.

UNIT - IV CLOSED LOOP CONTROL OF ELECTRICAL DRIVES 9

Drive considerations - control system components - mathematical preliminaries - Nyquist stability criterion - Assessment of relative stability using Nyquist criterion - closed loop frequency response - sensitivity analysis in frequency domain - PID controllers – feedback compensation, robust control system design

UNIT - V SYSTEM DESIGN USING MICROCONTROLLERS APPLICATIONS 9

Introduction - Interfacing LCD display - keypad interfacing - A.C. load control - PID control of D.C. motor - stepper motor control - brush less D.C. motor control dedicated hardware system versus microcontroller control - application areas and functions of microcontroller- control system design of microcontroller based variable speed drives - applications in textile mills, steel rolling mills, cranes and hoist drives, cement mills, paper mills, centrifugal pumps, turbo compressors.

COURSE OUTCOMES On completion of the course, students will be able to Understand the basics of various micro controllers **CO1** CO₂ Describe about AC and DC electric drives CO₃ Demonstrate the MC68HC11 Micro controller in all aspects CO₄ Design closed loop control of electrical drives **CO5** Explain various micro controller applications

TEXT BOOKS

- 1. John. B. Peatman, "Design with PIC Microcontrollers", Pearson Education, Asia 2008
- 2. Vedam Subrahmanyam, "Electric drives concepts and applications", Tata McGraw Hill publishing company limited, New Delhi, 2003 edition.
- 3. Michael Khevi, 'The M68HC11 Microcontroller Applications in Control, Instrumentation and Communication', Prentice Hall, 1997

- 1. Nagrath. I. J, Gopal. M, "Control Systems Engineering", New age international publishers, third edition 2014
- 2. Gopal. M, "Control System Principles and Design", Tata McGraw Hill publishing company limited, New Delhi, second edition.
- 3. Mohammed. A. El-sharkawi, "Fundamentals of Electrical drives", Thomson learning, A division of Thomson learning lin., 2001 edition.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	1	1	1	1	-	-	-	-	-	2	2	3	2	1	1
CO2	3	2	1	1	1	-	-	-	-	-	3	3	3	3	1	1
CO3	3	2	1	1	1	ı	1	-	ı	-	3	3	3	3	1	1
CO4	3	2	1	1	1	-	1	-	1	-	3	3	3	3	1	1
CO5	3	2	1	1	1	-	1	-	-	-	3	3	3	3	1	1

YEAR	IV	SEMESTER	VIII	L	T	P	C
COURSE CODE / COURSE TITLE		191EE8313 / POWER QUAL	ITY	3	0	0	3

- To introduce the power quality problem
- To educate on production of voltages sags, over voltages and harmonics and methods of control.
- To study overvoltage problems
- To study the sources and effect of harmonics in power system
- To impart knowledge on various methods of power quality monitoring.

SYLLABUS

UNIT - I INTRODUCTION TO POWER QUALITY

Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients - short duration variations such as interruption - long duration variation such as sustained interruption. Sags and swells - voltage sag - voltage swell - voltage imbalance - voltage fluctuation - power frequency variations. International standards of power quality. Computer Business Equipment Manufacturers Associations (CBEMA) curve.

UNIT - II VOLTAGE SAGS AND INTERRUPTIONS

Sources of sags and interruptions - estimating voltage sag performance. Thevenin's equivalent source - analysis and calculation of various faulted condition. Voltage sag due to induction motor starting. Estimation of the sag severity - mitigation of voltage sags, active series compensators. Static transfer switches and fast transfer switches.

OVER VOLTAGES

Sources of over voltages - Capacitor switching - lightning - ferro resonance. Mitigation of voltage swells - surge arresters - low pass filters - power conditioners. Lightning protection - shielding - line arresters - protection of transformers and cables. An introduction to computer analysis tools for transients, PSCAD and EMTP.

UNIT - IV HARMONICS

Harmonic sources from commercial and industrial loads, locating harmonic sources - Power system response characteristics -Harmonics Vs transients. Effect of harmonics - harmonic distortion - voltage and current distortion - harmonic indices - inter harmonics - resonance. Harmonic distortion evaluation - devices for controlling harmonic distortion - passive and active filters. IEEE and IEC standards.

UNIT - V **POWER QUALITY MONITORING**

Monitoring considerations - monitoring and diagnostic techniques for various power quality problems - modeling of power quality (harmonics and voltage sag) problems by mathematical simulation tools - power line disturbance analyzer - quality measurement equipment - harmonic / spectrum analyzer - flicker meters - disturbance analyzer. Applications of expert systems for power quality monitoring.

COURSE OUTCOMES

On completion of the course, students will be able to

- CO₁ Understand and analyze power system operation, stability, control and protection. CO₂ Discuss voltage interruptions in detail CO₃ Summarize various causes of over voltages **CO4** Explain about Harmonics in power systems CO₅ Suggest suitable power quality monitoring devies

TEXT BOOKS

- 1. Eswald.F.Fudis and M.A.S.Masoum, "Power Quality in Power System and Electrical Machines," Elseviar Academic Press,
- 2. J. Arrillaga, N.R. Watson, S. Chen, 'Power System Quality Assessment', Wiley, 2011.
- 3. Roger. C. Dugan, Mark. F. McGranagham, Surya Santoso, H.WayneBeaty, 'Electrical Power Systems Quality' McGraw Hill, 2003.(For Chapters 1, 2, 3, 4 and 5).

- 1. G.J.Wakileh, "Power Systems Harmonics Fundamentals, Analysis and Filter Design," Springer 2007.
- 2. M.H.J Bollen, 'Understanding Power Quality Problems: Voltage Sags and Interruptions', (New York: IEEE Press, 1999). (For Chapters 1, 2, 3 and 5)
- 3. G.T. Heydt, 'Electric Power Quality', 2nd Edition. (West Lafayette, IN, Stars in a Circle Publications, 1994). (For Chapter 1, 2, 3 and 5)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	ı	1	-	-	-	-	-	3	3	3	2	1
CO2	3	3	1	1	-	-	-	-	-	-	-	3	3	3	2	1
CO3	3	3	1	1	1	ı	1	-	ı	-	1	3	3	3	2	1
CO4	3	3	1	1	1	1	1	-	ı	-	1	3	3	3	2	1
CO5	3	3	1	1	1	-	1	-	-	-	-	3	3	3	2	1